TRANSACTIONS ON IMAGE PROCESSING, VOL. ??, NO. ?, FEBRUARY 2016

Alpha Matting with KL-Divergence Based Sparse
Sampling

Levent Karacan, Aykut Erdem, and Erkut Erdem

Abstract—In this paper, we present a new sampling-based
alpha matting approach for the accurate estimation of foreground
and background layers of an image. Previous sampling-based
methods typically rely on certain heuristics in collecting represen-
tative samples from known regions, and thus their performance
deteriorates if the underlying assumptions are not satisfied. To
alleviate this, we take an entirely new approach and formulate
sampling as a sparse subset selection problem where we propose
to pick a small set of candidate samples that best explains
the unknown pixels. Moreover, we describe a new dissimilarity
measure for comparing two samples which is based on KL-
divergence between the distributions of features extracted in
the vicinity of the samples. The proposed framework is general
and could be easily extended to video matting by additionally
taking temporal information into account in the sampling process.
Evaluation on standard benchmark datasets for image and video
matting demonstrates that our approach provides more accurate
results compared to the state-of-the-art methods.

Index Terms—Image Matting, Video Matting, KL-Divergence.

I. INTRODUCTION

CCURATE estimation of foreground and background

layers of an image or video frames plays an important
role for many image and video editing applications. In the
computer vision literature, this problem is known as alpha
matting, and mathematically, it refers to the problem of
decomposing a given image or video frame [ into two layers,
the foreground F' and the background B, defined in accordance
with the following linear image composition equation.

I=0pF,+(1—-0p,)B, (1)

where «, represents the unknown alpha matte which defines
the true opacity of each pixel p and whose values lies in
[0,1] with a;, = 1 denoting a foreground pixel and o, = 0
indicating a background pixel. This is a highly ill-posed
problem since for each pixel we have only three inputs but
seven unknowns (o and the RGB values of I}, and B,,). The
general approach to resolve this issue for image matting is to
consider a kind of prior knowledge about the foreground and
background in form of user scribbles or a trimap to simplify
the problem and use the spatial and photometric relations
between these known pixels and the unknown ones. As for
the video matting, estimating the alpha mattes of each frame
is a more challenging task than single image matting since it
requires both temporally coherent and spatially accurate maps.

Image matting methods can be mainly categorized into two
groups: propagation-based methods [5]-[11] and sampling-
based methods [2]-[4], [12]-[16]. The first group defines an

affinity matrix representing the similarity between pixels and
propagate the alpha values of known pixels to the unknown
ones. These approaches mostly differ from each other in their
propagation strategies or affinity definitions. The latter group,
on the other hand, collects color samples from known fore-
ground and background regions to represent the corresponding
color distributions and determine the alpha value of an un-
known pixel according to its closeness to these distributions.
Early examples of sampling-based matting methods [12], [13]
fit parametric models to color distributions of foreground
and background regions. Difficulties arise, however, when an
image contains highly textured areas. Thus, virtually all recent
sampling-based approaches [2]-[4], [14]-[16] consider a non-
parametric setting and employ a particular selection criteria to
collect a subset of known F' and B samples. Then, for each
unknown pixel p, they search for the best (F},, Bp) pair within
the representative samples, and once the best pair is found, the
final alpha matte is computed as
A (Ip — Bp)(Fp _ Bp)

by = ) (2)
i HFp _BPH2

The recent sampling-based approaches mentioned above
also apply local smoothing as a post-processing step to further
improve the quality of the estimated alpha matte. Apart from
the two main types of approaches, there are also some hybrid
methods which consider a combination of propagation and
sampling based formulations [ 7], or some supervised machine
learning based methods which learn proper matting functions
from a training set of examples [18]. Very recently, the authors
of [19] proposed a deep learning based solution as well.

For video matting, several researchers extend the existing
image matting methods so that they can extract temporally
coherent alpha mattes by using either user-generated or pre-
defined trimaps along the video frames. Some of these ap-
proaches [20]-[22] automatically generate trimaps by using
user interaction to segment foreground object and morpholog-
ical dilation operation and then apply image matting methods
to compute alpha matte. The methods [20], [23], [24] which
do not directly use temporal information suffer from the
temporal inconsistency, on the other hand, the ones [21], [25]-
[30] utilize the temporal information present more temporally
coherent alpha matte results. These methods differ from each
other in terms of how they incorporate temporal information
to compute alpha matte along the video sequences. For a more
comprehensive up-to-date survey of image and video matting
methods, we refer the reader to [31], [32].

The proposed matting approach belongs to the group of
sampling-based methods which will be reviewed in the next
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Original image Robust [1] Shared [2]

subsection. Relying on a non-parametric formulation, these
methods typically exploit different strategies to gather the
representative foreground and background samples. Our ob-
servation is that all these strategies lack a strong theoretical
basis, i.e. they require certain assumptions to hold to capture
the true foreground and background colors, and moreover,
they fail to adequately utilize the relationship between known
and unknown regions. In contrast, our approach offers a more
principled way to sampling by casting it as a sparse subset
selection problem [33], [34], in which the resulting samples
refers to a small subset of known foreground and background
pixels that best explains the unknown pixels. In particular,
sampling is formulated as a row-sparsity regularized trace
minimization problem which solely depends on pairwise dis-
similarities between known and unknown pixels, and for that,
we propose a new KL-divergence based contextual measure
as an efficient alternative to chromatic and spatial distances.
Besides we extend this sampling approach to video matting
by incorporating temporal information together with temporal
matting Laplacian to provide temporal coherency. Finally we
demonstrate proposed sampling strategy is quite feasible for
sparse user input as scribble.

A. Previous work on sampling-based image matting

Sampling-based models differ from each other in (i) how
it collects the representative foreground and background sam-
ples, and (ii) how it selects the best (F, B) pair for an unknown
pixel. Mishima’s Blue-screen matting method [35] captures
the image of a foreground object in front of a monochrome
background. This setup allows efficient estimation of fore-
ground and background distributions via clustering, and then
alpha values of unknown pixels are estimated by considering
their proximity to the extracted clusters. Another early work,
the Knockout system [36], estimates true color values of the
foreground and background layers of an unknown pixel by
a weighted sum of nearby known pixels with the weights
proportional to their spatial distances to the unknown pixel.

Global [3] Comprehensive [4] Proposed

D

Fig. 1. Non-parametric sampling-based matting approaches. Top row: An input image and the representative samples gathered by the Robust [ 1], Shared [2],
Global [3], Comprehensive [4], and the proposed Sparse Sampling based matting methods. The unknown pixel, the foreground and background samples are
shown in yellow, red and blue colors, respectively. Bottom row: Comparison of the estimated alpha mattes by the suggested approach and the state-of-the-art
Comprehensive Sampling matting method [4].

Robust matting [1], for an unknown pixel, collects samples
from the known nearby foreground and background pixels.
Among those samples, it then selects the pair that best fits the
linear composting equation defined in Eq. (1). As the selection
is carried by considering the color distortion, it provides
more robust results than the Knockout system. However, since
sampling depends only on the spatial closeness to the unknown
pixels, as shown in Fig. 1, the true samples might be missing in
the candidate set, decreasing the matting quality. In [37], it has
been shown that using geodesic distances improves the results
of this model to a certain extent. Shared matting [2] gathers
representative samples from the trimap boundary, assuming
that, for an unknown pixel, its true foreground and background
color can be found at the closest known region boundaries.
These pixels are defined as the boundary pixels that lie along
the rays which are originated from the unknown pixel and
that partition the image plane into disjoint parts of equal planar
angles. Then, the best pair among those are used to estimate its
alpha value w.r.t. an objective function that depends on spatial
and photometric affinity. It falls short, however, when the rays
do not reach the true samples. Weighted color and texture
(WCT) sampling [14] and its comprehensive version (CWCT)
extend Shared matting by combining the local sampling strat-
egy in [2] with a global one that depends on a clustering-based
probabilistic model. Moreover, it uses a texture compatibility
measure in addition to the color distortion measure to prevent
selecting overlapping samples.

Global sampling [3] also collects samples from the trimap
boundaries but to avoid the problem of missing true samples,
instead of emanating rays from unknown pixels, as in [2], it
considers all known boundary samples as a global candidate
set. To handle the large number of samples, it employs a simple
objective function and an efficient random search algorithm in
finding the best sample pair. However, as shown in Fig. 1, the
true colors might still be missed in the resulting sample set if
they do not lie along the trimap boundaries.

Comprehensive sampling matting [4] follows a global strat-
egy and divides the known and unknown regions into a number
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of segments so that the segment over which the samples
are gathered is decided according to the distance of a given
unknown pixel to the extracted foreground and background
segments. Sample colors are constructed as the means of the
color clusters that are obtained via a two-level hierarchical
clustering modeled by a parametric Gaussian mixture model.
This approach gives better results than the previous non-
parametric sampling based approaches. However, there is still
a possibility of missing true samples since the sampling
strategy depends on spatial closeness. As demonstrated in
Fig. 1, the true color samples might be very far away from
the unknown pixel.

Sparse coded matting [16] formulates image matting as a
sparse coding problem. It computes alpha values from a bunch
of sample pairs within a sparse coding framework instead
of finding only the best but single pair of foreground and
background (F, B) pair. These samples forming the dictionary
atoms are collected from the mean color of the superpixels
that lie along the boundaries of the trimaps. Thus, it might
also suffer from the missing true samples problem. This
problem is solved in its extended version [38] by including
samples from whole image region. To prevent overlapping
color distributions of foreground and background, it adaptively
controls the dictionary size according to a confidence value
that depends on probabilistic segmentation. A similar sparse
coding approach is used in [39] while selecting samples via a
two-level hierarchical k-means clustering process.

B. Previous work on video matting

Widely used blue screen matting [40] provides effective
video mattes as extracting the foreground objects from a
solid color background is easy, but it requires special studio
environment. For natural backgrounds, classical video matting
approaches [20], [21], [23], [24], [26], [28] first segment the
foreground object from the background and construct a trimap,
which will accordingly be propagated along the video frames
and used as inputs to single image matting methods. The
existing models in general differ from each other in terms
of either their segmentation and trimap construction strategies
or the latter considered matting schemes.

In particular, Chuang et al. [23] propose a video matting
method which builds upon Bayesian matting [12] in extracting
the foreground layer. Li et al. [20] generate a binary mask via
a Graph-Cut based segmentation algorithm, which will be used
as input for Coherent matting [41]. Wang et al. [21] employ a
Mean-Shift segmentation approach to segment the foreground
objects in video sequences. Video SnapCut [22] proposes a
new interactive video object extraction system using localized
classifiers for local image features such as color, edge and
learned shape prior. To impose temporal coherency, it con-
siders the alpha matte computed from previous frame as a
prior for the current frame. Tang et al. [26], [28] compute
a probability map or an opacity map and again construct a
Graph-Cut formulation to segment the video frames into fore-
ground and background layers before applying a 3D Closed-
form matting extended from [7]. Bai et al. [24] ask the user to
refine the automatically extracted trimaps on some keyframes

and then by using optical flow information between frames
they propagate these trimaps to all video frames which are
later used as inputs to Robust matting [1].

Video matting models which have been recently proposed
are particularly focused on the matting part of the pipeline
and interested in extracting temporally more coherent alpha
mattes. An important direction here is to extend the matting
Laplacian [7] by temporal information. For example, [26]-
[30], [42] all employ a matting Laplacian extended to 3D
by additionally considering the temporal domain. This modi-
fication provides extra local smoothness over extracted alpha
mattes. Specifically, Choi et al. [27] use Non-local matting [8]
approach to define a 3D nonlocal matting Laplacian on a
3D nonlocal neighborhood between video frames to propagate
alpha matte values along the video sequences. Li et al. [29]
incorporate motion information to KNN Laplacian [9] by
using two-frame affinity matrix and propose a closed-form
solution. Shahrian et al. [30] propose an improvement over the
Comprehensive sampling scheme [4] in which the sampling
phase is expanded by considering previous frame samples
and by using local texture features to provide temporal and
spatial consistency. Finally, they apply a temporal refinement
via 3D matting Laplacian and the alpha matte priors computed
from the previous frames. Zou et al. consider the non-local
principles in [27], [29] and formulate a sparse dictionary
learning problem to represent the known foreground and
background colors provided from user input. Similarly, a
refinement procedure is applied as a final step by employing
a two-frame matting Laplacian.

C. Our contributions

As described, all the existing sampling-based image matting
methods rely upon different assumptions regarding the selec-
tion policy of background and foreground samples. The justi-
fication of these assumptions are mostly valid. But still, they
are heuristic methods and they all lack a theoretical ground to
explain the relationship between known and unknown pixels
in all possible situations. As a step towards improving those
methods, in this paper we present a new approach for alpha
matting. As shown in Fig. 1, the proposed method allows a
more effective sampling, and thus provides considerably better
alpha mattes especially on the object boundaries. Furthermore,
we also show that our sampling scheme can be easily extended
to video matting by considering optical flow and temporal
refinements schemes, resulting in temporally consistent and
spatially accurate alpha mattes.

An earlier version of this work appeared in [44]. Compared
to the conference version [44], this paper has the following
improvements. First, we present a substantial number of
additional experiments on challenging scenarios with sparse
user inputs. These experiments demonstrate that the proposed
sampling scheme can also effectively deal with these difficult
cases as compared to the existing matting models. Second, we
extend the proposed approach to video matting by modifying
our sampling process in an effectively simple way to addi-
tionally take temporal information into account. The proposed
temporal sampling method theoretically enables to handle all
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Fig. 2. Distance embedding visualizations using t-SNE method [43] clearly demonstrate that the proposed KL-divergence based dissimilarity measure provides
a better discrimination between known foreground and background pixels than using the standard color distance.

video frames on the sampling phase although we present
results only for two consecutive frames due to computational
complexity. We also analyze the effects of motion information
and temporal sampling to alpha matte results. Finally, we add
an extra evaluation section about our video matting extension
where we extensively test the performance of the approach
on a recently introduced benchmark dataset [45]. Our results
are highly competitive to the current state-of-the-art, and our
method is the best performing approach among the sampling
based methods in both image and video matting benchmarks.

To conclude the introduction, the main contributions of this
paper can be summarized as follows:

(1) To overcome the limitations of the previous works, we
develop a well-founded sampling strategy, which rely on a
recently proposed sparse subset selection technique [33], to
select a small set of foreground and background samples that
best explain the unknown pixels.

(2) We design a new dissimilarity measure between two
samples based on KL-divergence between the distributions
of the features extracted in the vicinity of the samples. This
measure is utilized in both selecting the representative samples
and finding the best (F, B) pair for an unknown pixel.

(3) We provide compelling qualitative and quantitative re-
sults on a benchmark dataset of images [46] that demonstrate
substantial improvements in the estimated alpha mattes upon
current state-of-the-art methods.

(4) We extend our sampling strategy to compute alpha mat-
tes for video sequences by incorporating motion information
in an effortless way. Besides, we demonstrate the effectiveness
of our video matting method on the recently proposed video
matting benchmark dataset [45].

(5) We show the feasibility of our method for hard-to-handle
case of sparse user inputs on a number of images.

II. PROPOSED APPROACH

In this study, we build upon a recent work by Elhamifar et
al. [33], and address the sampling process in image and video
matting as a sparse subset selection problem. In particular, we
find a few representative pixels for the known foreground and
background regions solely based on pairwise dissimilarities
between the known and unknown pixels. As in other sampling-
based approaches, in our formulation, the dissimilarity mea-

sure used in comparing two samples is of great importance
since it directly affects the quality of selected samples. As
we mentioned earlier, another contribution of this study is a
new dissimilarity measure which is based on KL-divergence
between feature distributions. In the following, we begin with
the definition of our dissimilarity measure, and then discuss the
details of the proposed algorithm. The steps of the algorithm
involves collecting foreground and background color samples
from known pixels via sparse subset selection, then we define
an objective function to find the best (F,B) pair for an
unknown pixel according to linear composition equation. After
that, we explain how we extend defined sampling strategy to
video matting by utilizing temporal information.

A. Dissimilarity Between Two Samples

Sampling-based approaches generally consider very simple
measures which depend on chromatic and/or spatial simi-
larities [1]-[4]. The only exceptions are [I14], [15], which
also employ some texture similarity measures. Unlike those
measures, here, we consider a statistical data representation
and propose to use an information-theoretic approach. In
particular, our measure depends on a parametric version of the
Kullback-Leibler (KL) Divergence [47], a well-known non-
symmetric measure of the difference between two probability
distributions in information theory, which we describe below.
We note that KL-Divergence was used in a different way for
video matting previously in [27]

Given an input image, we extract a 9-dimensional feature
vector ¢ for each pixel as follows:

i
owy)= oy r g b LI L] Ll 1yl]

with (z,y) denoting the pixel location, I = [r g b] represent-
ing the pixel values of the RGB color space, and I, I, I,
I, respectively corresponding to the first and second-order
derivatives of the image intensities, estimated via the filters
[-101] and [—1 2 —1] in horizontal and vertical directions.

Next we group the pixels into perceptually meaningful
atomic regions using the SLIC algorithm [48]. The motivation
behind this step is two folds. First, we use mean color of each
foreground or background superpixel to reduce the sample
space over which the representative samples are determined.



TRANSACTIONS ON IMAGE PROCESSING, VOL. ??, NO. ?, FEBRUARY 2016

Second, extracting these superpixels helps us to describe a
pixel by means of the characteristics of its neighboring pixels,
which provides a source of contextual information.

Let s, and s, respectively denote two superpixels. Then, one
can use the KL-divergence to measure the distance between s,
and s, by considering the corresponding feature distributions
P and Q as

h p(z)In @dx 4

q(x)

In our formulation, we assume that each feature distribution
can be modeled through a multivariate normal distribution
such that P ~ N, = N (up,X,). Here, p(x) and q(x)
respectively denote these probability density functions of P
and Q. Then, the KL-Divergence between two superpixels s,
and s, is described as follows:

1 det X
Dicr (N, IN:,) =5 (tr (B;'2p) +In (det zq>

Dict (PIQ) = |

—00

o)
+ (kg — Np)ngl(ﬂq — pip) — k)

with k = 9 denoting our feature dimension.
Note that the KL-divergence is not symmetric, hence we
symmetrize it as follows to obtain a distance metric:

dist(sp,54) = Dicr (N, IN.,) + DN NG, (6)

In measuring the dissimilarity between two superpixels
s, and s;, we found that, instead of using the metric in
Eq. (6), the dissimilarity measure derived below lead to better
discrimination:

1
S8y 50) = dist(sp, $q) + € ™
d(sp, q) =1 —min(S(sp, sq),1) ®)

where we take € = 0.5 in the experiments.

In Figure 2, we qualitatively verify the effectiveness of
our statistical dissimilarity measure over using only the mean
color values of the superpixels. For a given input image, we
compute the pairwise dissimilarities between the superpixels
extracted from the known foreground and background, and
unknown regions and then these values are projected to a
2-dimensional space using t-SNE [43]. As can be seen, the
proposed KL-divergence based dissimilarity measure provides
better discrimination than simply using color distance.

B. Sampling via Sparse Subset Selection

Our strategy to obtain representative samples of known
foreground and background regions to encode unknown region
is inspired by the recently proposed Dissimilarity-based Sparse
Subset Selection (DS3) algorithm [33], which formulate subset
selection as a row-sparsity regularized trace minimization
problem and presents a convex optimization framework to
solve it. Suppose we use K and U to represent the set of
superpixels extracted from the known foreground (f) and
background (b), and unknown (u) regions, with N = Ny + N,
and M elements, respectively:

—rf foob b
K= {51,...,5Nf,sl,...,sNb}

&)
U = {s¥, sy}

Assume that the pairwise dissimilarities {d;; }5;11]1\\]4 be-
tween superpixels of known region K and unknown region
U are computed using the dissimilarity measure defined in
Eq. (8)', and arranged into a matrix form as

d/ dir dio dim

c RNX]W (10)

dj dn1  dne dn M

where the entries d;; signifies how well the superpixel 4
represents the superpixel j, the smaller the value, the higher
the degree of representativeness.
According to the method described in [33], in order to find
a sparse set of samples of K that well represents U, one can
introduce a matrix of variables P € RV*M ag
p1T P11

D12 Pim

(1)

Py pN1 o dN2 PNM

whose each entry p;; € [0,1] is associated to d;; and denote
the probability of superpixel ¢ being a representative for
superpixel j. Then, the problem can be formulated as the
following trace minimization problem regularized by a row-

sparsity term:
min 5 [Plly + tr(DTP)

12
s.t. 1TP=1T,P>0 (12)

where the first term ||P|l10c = Y, ||Pillo penalizes the

size of the representative set, the second term tr(D'P) =
Zij di;p;; simply measures the total encoding cost, and the
parameter y provides a trade-off between number of samples
and encoding quality where smaller values of v will lead
to more number of representative samples. An optimal so-
lution P* can be found very efficiently using an Alternating
Direction Method of Multipliers (ADMM) approach [33], in
which the indices from the nonzero rows of the solution P*
give us the selected samples of foreground and background
superpixels, where we use the mean colors of these superpixels
as the candidate set of foreground F' and background B colors.

Figure 3 shows the samples obtained with our sparse
sampling strategy on an illustrative image. As it can be seen,
the proposed approach allows robust selection of a small set
samples from the known regions where the selected samples
are the samples amongst the ones that best represent the
unknown regions. Hence, as compared to the existing sampling
based models, we employ less number of samples to determine
the alpha matte values of the unknown pixels.

C. Selecting The Best (F, B) Pair

As compared to local sampling methods for image matting,
which only collect samples near a given unknown pixel,
employing a global scheme, such as ours, has the advantage
of not missing any true samples if they are not located in the

'We note that the approach is quite general in that it could work with
dissimilarities which are asymmetric or violate the triangle inequality.
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Fig. 3. Sampling via sparse subset selection. Candidate foreground and background samples are shown in red and blue, respectively.

vicinity of the unknown pixel. In some cases, however, there
is also a possibility that a local analysis may work better,
especially when local samples are more strongly correlated
with the unknown pixel. Hence, to get the best of both
worlds, we decide to combine our global sparse sampling
strategy with a local sampling scheme. Specifically, for a given
unknown pixel, we enlarge the global candidate set to include
10 additional foreground and background samples which are
selected from the spatially nearest boundary superpixels.
Once candidate foreground and background colors are sam-
pled for an unknown pixel, we select the best foreground and
background pair (F, B) and accordingly determine its alpha
matte value. In order to identify the best pair, we define a
goodness function that depends on four different measures,
which are described in detail below. In particular, in our
formulation, we adopt the previously suggested chromatic
distortion C,, and spatial distance .S,, measures [3], [4], [14],
[16] and additionally propose two new contextual similarity
measures 1, and R, to better deal with color ambiguity.
For an unknown pixel u and a foreground-background pair
(F;, B;), the chromatic distortion C,, measures how well the
alpha matte & estimated via Eq. (2) from (F;, B;) fit to the
linear composite equation given by Eq. (1), and is defined as

Cyu(F;, B;) = exp(—||I, — (&F; + (1 — &)B,)|) 13)

where I,, denote the observed color of the unknown pixel w.

The spatial distance measure .S,, quantifies the spatial close-
ness of the unknown pixel u to the sample pair (F;, B;)
according to the distance between the coordinates of these
pixels. Therefore, it favors selecting samples that are spatially
close to the unknown pixel. It is simply defined as

Su(Fiy Bi) = exp <_ UZ—Ffz‘H) - exp (_ ||UZ—Bbi||) (14)

where f; and b; respectively denote the spatial coordinates
of the centers of the superpixels that are associated with
the foreground and the background samples F; and B,;.
The scalars Zp = (1/np)d 2 |lu— fill and Zp =
(1/nB) >pE, llu — bi|| are used as scaling factors, which
correspond to the mean spatial distance from the unknown
pixel u to all foreground samples F' with nr elements and all
background samples B with np elements, respectively.

One of the great challenges in image matting is the color
ambiguity problem which arises when the foreground and
background have similar colors. As most of the matting
studies consider pixel based similarities in comparing samples,
they generally fail to resolve this ambiguity and incorrectly

recognize an unknown foreground pixel as background or vice
versa. To account for this, we introduce the following two
additional local contextual similarity measures 7, and R,,
which both exploit the similarity function defined in Eq. (7).

The first measure 7T, specifies the compatibility of the
unknown pixel with the selected foreground and background
samples, computed by means of their statistical feature simi-
larities, and it provides a bias towards those pairs (F;, B;) that
have local contexts similar to that of the unknown pixel, and
is formulated as

Tu(Fzsz) = S(SF.LySu) +S(SBHSU) (15)

where sp,, sp,, and s, respectively denote the superpixels
associated with the corresponding foreground and background
samples and the unknown pixel.

The second measure R, corresponds to a variant of the
robustness term in [1], which builds upon the assumption
that for any mixed pixel whose color is affected by both the
foreground and the background, the true background and fore-
ground colors have similar feature statistics, calculated over
the corresponding superpixels. Thus, it favors the selection of
the foreground and the background samples that have similar
contexts, and is defined as

Ru(Fy, Bi) = S(sk,, 58,). (16)

Putting these four measures together, we arrive at the
following objective function to determine the best (F, B) pair:

Ou(an Bz) = CU(F’H Bz)c : Su(sz Bz)s

, (17
T.(F;,B;)" - R,(F;, B;)",

where c, s, t, r are weighting coefficients, representing the con-
tribution of the corresponding terms to the objective function.
Empirically, we observed that that the color distortion C,, and
the contextual similarity measure 7, are more distinguishing
than others, and thus we set the coefficients as ¢ = 2,s =
0.5,t = 1,7 = 0.5. Brute-force optimization is done on the
objective function in Eq.(17) to select the best background and
foreground color samples.

D. Pre- and Post-Processing

Motivated by recent sampling based matting studies [4],
[16], we apply some pre- and post-processing steps. First,
before selecting the best (F,B) sample pairs, we expand
known regions to unknown regions by adopting the pre-
processing step used in [4], [16]. Specifically, we consider
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an unknown pixel u as a foreground pixel if the following
condition is satisfied for a foreground pixel f € F"

(D(Iuvjf) < Ethr)/\(HIu_IfH < (Othr_D(IuaIf))a (18)

where D(I,,Iy) and ||I, — If|| are the spatial and the
chromatic distances between the pixels u and f, respectively,
and f, and Fyp,,- and Clyy,, are the corresponding thresholds
which are all empirically set to 9. Similarly, an unknown pixel
u is taken as a background pixel if a similar condition is met
for a background pixel b € B.

Second, as a post-processing, we perform smoothing on the
estimated alpha matte by adopting a modified version of the
Laplacian matting model [7] as suggested in [2]. That is, we
determine the final alpha values a* by solving the following
global minimization problem:

o =argmina' Lo+ Ma — &) "A(a — &)
“ 19)
+6(a—a) Al — &)

where the data term imposes the final alpha matte to be close
to the estimated alpha matte & from Eq. (2), and the matting
Laplacian L enforces local smoothing. The diagonal matrix
A in the first data term is defined using the provided trimap
such that it has values 1 for the known pixels and O for the
unknown ones. The scalar ) is set to 100 so that it ensures no
smoothing is applied to the alpha values of the known pixels.
The second diagonal matrix A, on the other hand, is defined by
further considering the estimated confidence scores in a way
that it has values 0 for the known pixels and the corresponding
confidence values O, (F, B) from Eq. (17) for the unknown
pixels. The scalar ¢ here is set to 0.1 and determines the
relative importance of the smoothness term which considers
the correlation between neighboring pixels.

III. EXTENSION TO VIDEO MATTING

As discussed in the previous section, a successful color sam-
pling method should overcome the color ambiguity problem
which occurs when the foreground and the background have
similar color distributions. Fortunately, in video matting, the
temporal motion information in the video sequences provides
extra information to disambiguate this problem in the pres-
ence of dissimilar motion patterns. In this regard, we extend
proposed sampling strategy to exploit temporal information
by addressing both the missing true samples and the color
ambiguity problems to obtain more accurate alpha mattes.

A. Motion Aware Temporal Sampling

The similarity metric employed in our sampling approach
is quite generic in that we can incorporate any visual feature
including motion information in a fairly straightforward way.
In our case, we extend the feature vector ¢ in Eq. (3) with the
optical flow vectors obtained by [49], as follows:

T
6(wy) = [2 y r g b Ll L] el Lyl v vy |
(20)
where (v,, v,) are optical flow vectors. By doing so, we let the
proposed KL-divergence based dissimilarity measure consider
contextual motion along with color and orientation.

Such a feature distribution in a local region allows the
proposed dissimilarity measure given in Eq. (5) to discrim-
inate color, texture and motion information within our sparse
subset selection phase (Eq. (12)). We further use the objective
function given in Eq. (17) to select the best (F, B) pair for
each unknown pixel. This objective function is also used as
a confidence value in the alpha refinement step that will be
explained in the following section. As a result, motion infor-
mation is involved in each step of our video matting method.

Sampling from a single frame can be insufficient due to
various types of changes between the video frames such as
changes in the illumination, occlusion and changing topology.
For this reason, we expand the sampling space in Eq. (9) by
including the known foreground and background superpixels
from both the previous frame ¢ — 1 and the current frame ¢ as:

t—1 t—1 t—1 t—1 t t t t
K= {81 , b b f f b b

ceny 81\/’;71’81 geeey SN£71751 g eeey SN}’S]- g ooy SNg
t t

U= {81{ 7...,511(/”}

2D

This definition extends the dissimilarity matrix D between
the unknown and known superpixels in Eq. (10) to include the

.....

of known foreground and background superpixels extracted
from the previous frame ¢ — 1 and the current frame ¢. After
constructing the dissimilarity matrix and related probability
matrix P in Eq. (11), we solve Eq. (12) to pick up the
representative superpixels and accordingly the color samples.
Similar to image matting, we enrich global samples with
local samples from the current frame. We apply the same
procedure that we used in image matting to select the best
(F, B) pair but note that the motion information is incorpo-
rated into the feature vectors so that the objective function
now contains temporal information via our KL-divergence
based dissimilarity measure. Figure 4 shows the temporal
samples obtained by our modified sampling strategy. The
representative samples for the brown background are chosen
from the previous frame as the corresponding region becomes
occluded by the foreground object in the current frame.

B. Alpha Refinement

After the alpha matte is estimated based on the selected
color samples using Eq. 2, we further refine it by post-
processing. For this purpose, some video matting meth-
ods [26], [28], [30] employ a 3D matting Laplacian defined
over a multi-frame neighborhood by warping the neighbor-
ing frames to current frame via optical flow. It provides
a better temporal coherency as compared to the standard
matting Laplacian [7]. However, we observe that obtaining
better temporal coherences might worsen the spatial accuracy
due to inaccurate estimation of optical flows. Hence, in our
experiments, we only consider the standard matting Laplacian
that we extend with additional motion confidences.

af =arg minet ' L'a! + Mat —ah)TA (ot — ab)
at (22)
+ 5(at _ dt)TAt(at _ &t)
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Input Frame t

Frame t-1

Frame t

Superpixels

Optical Flow Temporal Samples

Fig. 4. Temporal sampling using sparse subset selection. Candidate foreground and background samples, which are respectively shown in red and blue color,

come from the previous frame ¢ — 1 and the current frame ¢.

where L! is the matting Laplacian, and the other terms are
the data fidelity terms. The difference with Eq. (19) lies
in the diagonal matrix Af. Specifically, for each unknown
pixel, it has the confidence value O (F*, B') estimated from
the modified motion-aware sampling scheme, and O for the
remaining known pixels at the frame ¢.

IV. EXPERIMENTS

We evaluate our alpha matting approach on benchmark
datasets used for evaluating image [46] and video [45] matting.
First, we conduct an extensive evaluation of the proposed
sampling strategy for image matting by providing qualitative
and quantitative results and investigate the effects of the
parameters in detail. Second, we compare our extension to
video matting against state-of-the-art video matting methods
both qualitatively and in terms of a set of spatial and temporal
quality metrics. Next, we demonstrate that our sampling strat-
egy can also cope with sparse user inputs, beating some recent
methods especially proposed for this kind of input. Lastly, we
argue the computational complexity of proposed approach.

A. Image Matting

Image matting benchmark dataset [46] contains 35 natural
images and each image has a foreground object with different
degrees of translucency or transparency. Among those images,
27 of them constitute the training set where the groundtruth
alpha mattes are available. On the other hand, the remaining 8
images are used for the actual evaluation, whose ground truth
alpha mattes are hidden from the public to prevent parameter
tuning. In addition, for each test image, there are three matting
difficulty levels that respectively correspond to small, large
and user trimaps. To quantitatively evaluate our approach, in
the experiments, we consider three different metrics, namely,
the mean square error (MSE), the sum of absolute differences
(SAD) and the gradient error. We do not report connectivity
scores as it is argued in [46] that it is not a robust measure.

Effect of v parameter. Fig. 5 shows that the average MSE
values over all the training images and all trimaps do not
vary much for different values of . These results seem to
be consistent with the theoretical analysis in [33] that for a
proper range of values, the DS3 algorithm that we utilize in

0.006
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w
@ 0.003

=

0.002

0
0.010 0015 0.020 0025 0.030 0.035 0.040 0.045
Y

Fig. 5. Effect of v parameter on the performance. Plot shows average MSE
values over all training images and all trimaps.

L | Sparse Sampling

Sparse+Local Sampling ]

Small Large User

Fig. 6. Effect of including local samples to the representative set obtained
with the proposed sparse sampling scheme. Plot shows average MSE values
over all test images for three types of trimaps.

sampling is guaranteed to find representative samples from all
groups when there is a mutual relationship between known and
unknown sets. In the remaining experiments, - is set to 0.025
as it provides the minimum MSE value for the training set.

Effect of local samples. In Fig. 6, we show the effect of
including local samples from boundary to the candidate set
found by the proposed sparse sampling scheme. The numbers
in the plot refer to the MSE errors averaged over all test
images. For each trimap type, adding some closest boundary
pixels further improves the performance. The smallest gain
is in the large trimaps since having more number of known
pixels helps our sparse sampling method to better exploit
the associations between the known and unknown regions,
eliminating the need for local samples.

Comparison with the state-of-the-art. Table I presents
the quantitative comparison of our approach and nine best
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TABLE I
EVALUATION OF MATTING METHODS ON THE BENCHMARK DATASET [46] WITH THREE TRIMAPS ACCORDING TO SAD, MSE AND GRADIENT ERROR.

Sum of Absolute Differences

Mean Square Error

Gradient Error

avg. avg. avg. avg. avg. avg. avg. avg. avg.

overall small large user overall small large user overall small large user

Method rank rank rank rank Method rank rank rank rank Method rank rank rank rank
1. DCNN Matting 24 34 1.1 2.6 1. DCNN Matting 3 38 L5 39 1. DCNN Matting 6.3 8.1 53 5.6
2. CSC Matting 9.1 13 53 9.1 2. LNSP Matting 8 5.6 74 11.1 2. Graph-based Sparse Matting 9.1 7.1 7.8 12.5
3. LNSP Matting 9.3 6 8.9 13 3. Proposed Method 10.2 9.5 9.1 12 3. Proposed method 9.3 74 8 125
4. Graph-based sparse matting 9.6 9.9 10 9 4. CCM 10.5 12.8 10.9 7.9 4. LNSP Matting 9.8 74 9.5 12.6
5. Proposed Method 9.8 74 9.5 12.6 5. Graph-based sparse matting 10.9 113 1.1 10.2 5. Comprehensive sampling 10.5 10.4 10.3 10.8
6. TSPS-RV Matting 111 9.6 10.1 13.6 6. TSPS-RV Matting 113 11.4 8.4 14.1 6. CCM 124 14.3 12.4 10.6
7. Tterative Transductive Matting 11.8 12.8 115 11.1 7. Comprehensive sampling 114 10.1 114 12.6 7. SVR Matting 12.5 14.1 13.9 9.4
8. Comprehensive sampling 144 8.1 12 14.3 8. SVR Matting 11.7 14.8 103 10.1 8. Sparse coded matting 12.6 13.6 1.9 12.4
9. SVR Matting 123 14.8 11.8 10.3 9. CW Color and Texture 12.5 12.1 13.5 11.9 9. Segmentation-based matting 129 15.5 11.4 11.6
10. CW Color and Texture 12,3 124 13 11.6 10. CSC Matting 13.5 16.6 8.1 15.9 10. Global Sampling Matting 13 12.4 14.6 12

(a) (b)

®

() ()] (e

Fig. 7. Visual comparison of our approach with other sampling-based image matting methods. (a) Input image, (b) CWCT sampling [!5], (c¢) Comprehensive
sampling [4], (d) LNSP matting [17], (e) Sparse coded matting [16] and (f) Proposed approach.

performing matting algorithms on the benchmark hosted at
www.alphamatting.com [46] where we report the average rank-
ings over the test images according to SAD, MSE and gradient
metrics for all three different types of trimap, and the overall
ranks, computed as the average over all the images and for all
the trimaps. Overall, our approach provides highly competitive
results against the state-of-the-art methods. It ranked the third
best with respect to the gradient error and mean square
error and the fitth best for the sum of absolute differences.
Especially, it outperforms all the existing sampling-based
matting methods. Fig. 7 provides qualitative comparisons of
our approach and the recent matting studies [4], [15]-[17] on
the doll, troll and net images from the benchmark dataset.
Textured background. In the first row of Fig. 7, we show
the ability of our approach to naturally handle textured back-
grounds via the proposed KL-divergence based contextual
measure. For the doll placed in front of a highly textured

background, while other matting methods, including CWCT
sampling [15] which employs an additional texture compati-
bility measure, tend to interpret some of the colored blobs in
the background as foreground, our model produces a much
more accurate alpha map.

Color ambiguity. When the foreground object and the back-
ground have similar color distributions, most matting studies
suffer from the so-called color ambiguity and fail to provide
reliable alpha values for the unknown pixels. Both second and
third rows of Fig. 7 illustrate this issue where the colors of
the book and the bridge in the background is very similar
to those of the hairs of the doll and troll, respectively. For
these examples, CWCT [15] and Comprehensive sampling [4]
give inaccurate estimations whereas LNSP matting [17] over-
smooths the foreground matte. Sparse coded matting [16]
provides better results but misses some of the foreground
details in the hairs. On the other hand, our method is able
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to achieve significantly better results, providing a more robust
discrimination between the background and the foreground.

Missing samples. Previously proposed sampling-based mat-
ting methods typically employ certain assumptions while col-
lecting samples from known regions but these assumptions
might sometimes lead to missing true foreground and back-
ground colors for some unknown pixels. In the fourth row of
Fig. 7, we demonstrate the effectiveness of our sparse sampling
strategy on the froll image. While the other sampling based
methods [4], [15], [16] incorrectly recognize the blue ribbon
as mixed pixels, our algorithm successfully interprets it as a
part of the foreground object. Likewise, the LNSP matting [17]
produces an alpha map similar to ours as it uses a non-local
smoothness prior in their formulation. If known regions do not
include some color samples representing the colors from the
unknown region, our method might not give accurate alpha
matte results as seen for the plastic bag image.

Translucent foreground. Transparent or translucent objects
pose another great challenge for matting as they make collect-
ing true foreground color samples difficult. The last two rows
of Fig. 7 show the results of two different regions from the
net image in detail where such a foreground object exists. Due
to the characteristics of the test image, all of the competing
matting methods fail to differentiate background pixels from
the foreground although the distributions of the background
and foreground colors are well separated. In contrast, our
approach produces a remarkably superior alpha matte.

B. Video Matting

For our video matting experiments, we use the very
recently proposed video matting benchmark dataset [45]
(www.videomatting.com) to evaluate our video matting results.
This dataset includes 3 training sequences with available
ground-truth maps, and 10 testing sequences with hidden
ground-truth maps. Furthermore, for each video frame, 3
different trimaps are generated according to the size of the
unknown region as narrow, medium and wide.

Effect of temporal sampling and motion features. Almost
all video matting methods [22]-[24], [27]-[30] employ optical
flow fields as motion features. However, as discussed in the
related papers, optical flow estimation is not always perfect,
which may deterioate the quality of extracted alpha mattes. We
analyze the effect of our optical-flow based motion features
on the training sequences of [45] (Alex, Castle, Dmitriv, see
Fig. 8), where the ground truth alpha mattes are available.
In Table II, we present the effects of motion and temporal
sampling in terms of SSD (sum of squared distances) metric.
As can be seen, motion and temporal sampling improve the al-
pha matte results for Alex and Dmitriv sequences, however for
castle sequence worsen the results. The Castle sequence has a
complex foreground object and a highly textured background
region as compared to other sequences, and we think that these
factors negatively affect the extracted optical flow vectors,
and consequently the quality of our temporal sampling. In
the remaining experiments, on the other hand, we report our
results with both using motion features and temporal sampling
since this setup provides the best results on the overall training
sequences.

TABLE 11
EFFECT OF SPATIAL SAMPLING (SINGLE FRAME) VS. TEMPORAL
SAMPLING (TWO FRAMES) AND OPTICAL FLOW INFORMATION (OF) TO
ALPHA MATTE RESULTS ON SSD SCORES

[ Video [ Trimap [ Spatial Spatial+OF  Temporal+OF |
Narrow 2.134 2.129 2.125
Alex Medium 1.740 1.707 1.689
Wide 1.852 1.753 1.729
Narrow 6.736 7.098 7.158
Castle Medium 7.160 7.591 7.624
Wide 7.671 8.150 8.208
Narrow 1.918 1.916 1.917
Dmitriv | Medium 2.409 2.336 2.329
Wide 2.734 2.662 2.652

L’ —

[T
Alex

Dmitriv

Castle

Fig. 8. Training sequences from the video matting benchmark dataset [45].

Comparison with other methods. Table III shows the
quantitative evaluation of different matting methods on the
video matting benchmark dataset [45]. Evaluation is carried
out on the test sequences according to the quality metrics
which highlight spatial accuracy and temporal coherency of the
estimated alpha mattes. Specifically, SSDA (Sum of Squared
Distances) error measure is used to evaluate the accuracy
of the estimated alpha matte for each pixel. Two additional
temporal-coherency metrics, which measure deterioration ratio
of the alpha mattes over consequent frames, are used to test
the temporal coherency. SSDdt measures the overall variation
in the sum squared distances between the estimated alpha
matte and the ground-truth for each pixel over the consecutive
frames. MESSDdt measure is the generalized version of SS-
Ddt, which additionally considers the optical flow information
over video frames. Thus, it provides a more robust comparison
of specifically the motion-aware matting methods.

Matting methods are sorted by the average ranking scores
according to the accuracy metric SSDA and the temporal-
coherency metrics SSDdt and MESSDdt. As can be seen
from Table III, our method gives the best results for the
spatial accuracy metric and highly competitive results for the
temporal-coherency metrics. Here, it is worth noting that the
motion-aware MESSDdt metric generally provides a more
robust comparison of the methods than the SSDdt metric
since the inaccurate optical flow estimations could worsen the
quality of alpha mattes as we analyzed above.

In Fig. 9, we also give the qualitative comparisons of our ap-
proach against the other best-performing matting methods [7],
[18] and the Refine Edge Tool of Adobe on the Juneau
sequence, for the frames 45, 46 and 47. The zoomed regions
demonstrate that our method is affected from the missing true
color and the color ambiguity far less than the other methods
since it inherently employs motion information in sampling
and uses a sampling strategy extended to consider temporal
information as well.
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EVALUATION OF MATTING METHODS ON THE BENCHMARK DATASET [

SSDA

TABLE III

SSDdt

MESSDdt

] WITH THREE TRIMAPS ACCORDING TO SSDA, SSDDT AND MESSDDT.

avg.

avg. avg.

avg.

avg.

avg.

overall narrow medium wide overall narrow medium wide overall narrow medium wide
Method rank rank rank rank Method rank rank rank rank Method rank rank rank rank
1. Proposed Method 23 32 2.1 1.7 1.Learning Based 2.8 28 28 27 1.Learning Based 2.3 23 23 24
2. Learning Based 2.7 2.5 27 3 2. Closed Form 31 28 33 3.1 2. Closed Form 27 24 2.6 3
3. Comprehensive Sampling 3.6 4 33 34 3. Refine Edge 34 39 34 29 3. Proposed Method 3.6 39 35 34
4. Closed Form 39 39 37 41 4. Proposed Method 4 49 37 34 4. Refine Edge 36 43 37 28
5. Shared Matting 53 49 54 55 5. Comprehensive Sampling 5 48 49 52 5. Comprehensive Sampling 5 49 49 53
6. Robust Matting 55 45 5.6 6.4 6. Robust sampling 5.2 43 54 6 6. Shared Matting 6.2 57 6.3 6.6
7. Refine Edge 55 5.8 55 52 7. Shared Matting 58 5.6 5.9 6 7. Robust Matting 6.4 54 6.4 73
8. KNN Matting 84 8.9 8.6 78 8. KNN matting 8.5 8.8 8.5 8.2 8. KNN Matting 7.6 8.4 7.6 6.9
9. Bayesian Matting 87 7.9 89 93 9. Spectral Matting 92 94 92 9.1 9. Nonlocal Matting 93 9.9 94 8.5
10. Nonlocal Matting 94 9.7 9.6 9 10. Nonlocal Matting 9.3 9.6 9.3 9.1 10. Spectral Matting 9.5 9.7 9.4 9.3

Frame 45 Frame 46 Frame 47

(b)

©

(d)

(e)

Fig. 9. Visual comparison between the proposed and the other best-performing video matting methods on the video benchmark dataset [45]. (a) Input video

frames, (b) Closed Form [7], (c) Refine Edge Tool, (d) Learning Based [

C. Sparse Scribbles

Our approach can also work with sparse user inputs since
we do not make any spatial assumption while collecting color
samples, which is the case for many previous sampling-based
image matting methods [!]-[4]. More specifically, we apply
our sampling strategy on the sparse user inputs by considering
the superpixels that contain any user scribbled image pixel
as the known superpixels and the others as the unknown su-
perpixels. Consequently, we construct the dissimilarity matrix
between known and unknown superpixels via our proposed
KL-Divergence based dissimilarity measure and select the
representative color samples from the known user scribbles
using the sparse subset selection strategy described in Eq. (12).

We compare the performance of our method with KNN
Matting [9] and Nonlocal Matting [8] methods which are
both tailor-fit to work with sparse user inputs and with

] and (e) Proposed approach.

Closed Form [7] and Comprehensive sampling [4] methods. In
Fig. 10, some image matting results along with the estimated
MSE (Mean Square Error) scores are given. Our method in
general produces better results than all these methods. This
also demonstrates that the proposed sampling scheme for
image matting is a generic and theoretically well-grounded
sampling strategy for alpha matting problem.

D. Runtime Performance

In our work, we used the ADMM-based serial implementa-
tion of the DS3 method, but it is indeed highly paralleliz-
able [33]. Overall, the runtime performance of our current
implementation is better than Comprehensive sampling (CS)
as our algorithm selects much less and more representative
samples from the known regions, which significantly reduces
runtime costs of the subsequent steps. For example, for the
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Scribbles Closed-form [7] Non Local [§] KNN [9] Comprehensive Sampling [4] Proposed
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Fig. 10. Alpha matting results with scribble based user input and the corresponding MSE scores estimated over the input images.

doll, donkey and elephant images in [46], the average running
times over all trimaps are 341 secs for our method, and 414
secs for CS, on a PC with an Intel Xeon 2GHz CPU.

V. CONCLUSION

In this paper, we developed a new and theoretically well-
grounded sampling strategy for image matting and extended
it to video matting. Rather than making assumptions about
the possible locations of true color samples, or performing a
direct clustering of all known pixels, our sampling scheme
solves a sparse subset selection problem over known pixels to
obtain a small set of representative samples that best explain
the unknown pixels. This property also makes our sampling
method directly applicable to sparse user inputs provided
to estimate alpha matte. Moreover, it employs a novel KL-
divergence based contextual measure in both collecting the
candidate sample set and finding the best (F, B) pair for an
unknown pixel. Our experiments on both image and video
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