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Abstract—Acquiring images of the same anatomy with multiple 
different contrasts increases the diversity of diagnostic 
information available in an MR exam. Yet, scan time limitations 
may prohibit acquisition of certain contrasts, and some contrasts 
may be corrupted by noise and artifacts. In such cases, the ability 
to synthesize unacquired or corrupted contrasts can improve 
diagnostic utility. For multi-contrast synthesis, current methods 
learn a nonlinear intensity transformation between the source and 
target images, either via nonlinear regression or deterministic 
neural networks. These methods can in turn suffer from the loss 
of structural details in synthesized images. Here, we propose a new 
approach for multi-contrast MRI synthesis based on conditional 
generative adversarial networks. The proposed approach 
preserves intermediate-to-high frequency details via an 
adversarial loss; and it offers enhanced synthesis performance via 
pixel-wise and perceptual losses for registered multi-contrast 
images and a cycle-consistency loss for unregistered images. 
Information from neighboring cross-sections are utilized to 
further improve synthesis quality. Demonstrations on T1- and T2-
weighted images from healthy subjects and patients clearly 
indicate the superior performance of the proposed approach 
compared to previous state-of-the-art methods. Our synthesis 
approach can help improve quality and versatility of multi-
contrast MRI exams without the need for prolonged or repeated 
examinations.  

  
Index Terms—generative adversarial network, image synthesis, 

multi-contrast MRI, pixel-wise loss, cycle-consistency loss. 
 

I. INTRODUCTION 
agnetic resonance imaging (MRI) is pervasively used in 
clinical applications due to the diversity of contrasts it 
can capture in soft tissues. Tailored MRI pulse sequences 

enable the generation of distinct contrasts while imaging the 
same anatomy. For instance, T1-weighted brain images clearly 
delineate gray and white matter tissues, whereas T2-weighted 
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images delineate fluid from cortical tissue. In turn, multi-
contrast images acquired in the same subject increase the 
diagnostic information available in clinical and research 
studies. However, it may not be possible to collect a full array 
of contrasts given considerations related to the cost of 
prolonged exams and uncooperative patients, particularly in 
pediatric and elderly populations [1]. In such cases, acquisition 
of contrasts with relatively shorter scan times might be 
preferred. Even then a subset of the acquired contrasts can be 
corrupted by excessive noise or artifacts that prohibit 
subsequent diagnostic use [2]. Moreover, cohort studies often 
show significant heterogeneity in terms of imaging protocol and 
the specific contrasts that they acquire [3]. Thus, the ability to 
synthesize missing or corrupted contrasts from other 
successfully acquired contrasts has potential value for 
enhancing multi-contrast MRI by increasing availability of 
diagnostically-relevant images, and improving analysis tasks 
such as registration and segmentation [4].     

Cross-domain synthesis of medical images has recently been 
gaining popularity in medical imaging. Given a subject’s image 
𝑥 in 𝑋 (source domain), the aim is to accurately estimate the 
respective image of the same subject 𝑦 in 𝑌 (target domain). 
Two main synthesis approaches are registration-based [5]–[7] 
and intensity-transformation-based methods [8]–[24]. 
Registration-based methods start by generating an atlas based 
on a co-registered set of images, 𝑥% and 𝑦%, respectively 
acquired in 𝑋 and 𝑌 [5]. These methods further make the 
assumption that within-domain images from separate subjects 
are related to each other through a geometric warp. For 
synthesizing 𝑦& from 𝑥&, the warp that transforms 𝑥% to 𝑥& is 
estimated, and this warp is then applied on 𝑦%. Since they only 
rely on geometric transformations, registration-based methods 
that rely on a single atlas can suffer from across-subject 
differences in underlying morphology [23]. For example, 
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inconsistent pathology across a test subject and the atlas can 
cause failure. Multi-atlas registration in conjunction with 
intensity fusion can alleviate this limitation, and has been 
successfully used in synthesizing CT from MR images [6], [7]. 
Nevertheless, within-domain registration accuracy might still 
be limited even in normal subjects [23].  

An alternative is to use intensity-based methods that do not 
rely on a strict geometric relationship among different subjects’ 
anatomies [8]–[24]. One powerful approach for multi-contrast 
MRI is based on the compressed sensing framework, where 
each patch in the source image 𝑥& is expressed as a sparse linear 
combination of patches in the atlas image 𝑥% [10], [22]. The 
learned sparse combinations are then applied to estimate 
patches in 𝑦& from patches in 𝑦%. To improve matching of 
patches across domains, generative models were also proposed 
that use multi-scale patches and tissue segmentation labels [16], 
[18]. Instead of focusing on linear models, recent studies aimed 
to learn more general non-linear mappings that express 
individual voxels in 𝑦% in terms of patches in 𝑥%, and then 
predict 𝑦& from 𝑥& based on these mappings. Nonlinear 
mappings are learned on training data via techniques such as 
nonlinear regression [8], [9], [23] or location-sensitive neural 
networks [19]. An important example is Replica that performs 
random forest regression on multiresolution image patches 
[23]. Replica demonstrates great promise in multi-contrast MR 
image synthesis. However, dictionary construction at different 
spatial scales is independent, and the predictions from separate 
random forest trees are averaged during synthesis. These may 
lead to loss of detailed structural information and suboptimal 
synthesis performance.  

Recently an end-to-end framework for MRI image synthesis 
has been proposed, Multimodal, based on deep neural networks 
[21]. Multimodal trains a neural network that receives as input 
images in multiple source contrasts and predicts the image in 
the target contrast. This method performs multiresolution 
dictionary construction and image synthesis in a unified 
framework, and it was demonstrated to yield higher synthesis 
quality compared to non-network-based approaches even when 
only a subset of the source contrasts is available. That said, 
Multimodal assumes the availability of spatially-registered 
multi-contrast images. In addition, Multimodal uses mean 
absolute error loss functions that can perform poorly in 
capturing errors towards higher spatial frequencies [25]–[27].  

Here we propose a novel approach for image synthesis in 
multi-contrast MRI based on generative adversarial network 
(GAN) architectures. Adversarial loss functions have recently 
been demonstrated for various medical imaging applications 
with reliable capture of high-frequency texture information 
[28]–[48]. In the domain of cross-modality image synthesis, 
important applications include CT to PET synthesis [29], [40], 
MR to CT synthesis [28], [33], [38], [42], [48], CT to MR 
synthesis [36], and retinal vessel map to image synthesis [35], 
[41]. Inspired by this success, here we introduce conditional 
GAN models for synthesizing images of distinct contrasts from 
a single modality, with demonstrations on multi-contrast brain 
MRI in normal subjects and glioma patients. For improved 
accuracy, the proposed method also leverages correlated 

information across neighboring cross-sections within a volume. 
Two implementations are provided for use when multi-contrast 
images are spatially registered (pGAN) and when they are 
unregistered (cGAN). For the first scenario, we train pGAN 
with pixel-wise loss and perceptual loss between the 
synthesized and true images (Fig. 1) [25], [49].  For the second 
scenario, we train cGAN after replacing the pixel-wise loss with 
a cycle loss that enforces the ability to reconstruct back the 
source image from the synthesized target image (Fig. 2) [50]. 
Extensive evaluations are presented on multi-contrast MRI 
images (T1- and T2-weighted) from healthy normals and glioma 
patients. The proposed approach yields visually and 
quantitatively enhanced accuracy in multi-contrast MRI 
synthesis compared to state-of-the-art methods (Replica and 
Multimodal) [21], [23].  

II. METHODS 

A. Image Synthesis via Adversarial Networks 
Generative adversarial networks are neural-network 

architectures that consist of two sub-networks; 𝐺, a generator 
and 𝐷, a discriminator. 𝐺 learns a mapping from a latent 
variable 𝑧 (typically random noise) to an image 𝑦 in a target 
domain, and 𝐷 learns to discriminate the generated image 𝐺(𝑧) 
from the real image 𝑦 [51]. During training of a GAN, both 𝐺 
and 𝐷 are learned simultaneously, with 𝐺 aiming to generate 
images that are indistinguishable from the real images, and 𝐷 
aiming to tell apart generated and real images. To do this, the 
following adversarial loss function (𝐿-./) can be used: 
     

 (1) 

 
where 𝐸 denotes expected value. 𝐺 tries to minimize and 𝐷 tries 
to maximize the adversarial loss that improves modeling high-
spatial-frequency information [26]. Both 𝐺  and 𝐷 are trained 
simultaneously. Upon convergence, 𝐺 is capable of producing 
realistic counterfeit images that 𝐷 cannot recognize [51]. To 
further stabilize the training process, the negative log-
likelihood cost for adversarial loss in (1) can be replaced by a 
squared loss [52]: 
 

 (2) 

 
Recent studies in computer vision have demonstrated that 

GANs are very effective in image-to-image translation tasks 
[49], [50]. Image-to-image translation concerns 
transformations between different representations of the same 
underlying visual scene [49]. These transformations can be used 
to convert an image between separate domains, e.g., generating 
semantic segmentation maps from images, colored images from 
sketches, or maps from aerial photos [49], [53], [54]. 
Traditional GANs learn to generate samples of images from 
noise. However, in image-to-image translation, the synthesized 
image has statistical dependence on the source image. To better 
capture this dependency, conditional GANs can be employed 

LGAN (G,D) = Ey[logD( y)]+ Ez[log(1− D(G(z)))] ,

LGAN (D,G) = −Ey[(D( y) −1)
2 ]− Ez[D(G(z))

2 ]
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that receive the source image as an additional input [55]. The 
resulting network can then be trained based on the following 
adversarial loss function: 

 

 (3) 

 
where 	𝑥 denotes the source image.  

An analogous problem to image-to-image translation tasks in 
computer vision exists in MR imaging where the same anatomy 
is acquired under multiple different tissue contrasts (e.g., T1- 
and T2-weighted images). Inspired by the recent success of 
adversarial networks, here we employed conditional GANs to 
synthesize MR images of a target contrast given as input an 
alternate contrast. For a comprehensive solution, we considered 
two distinct scenarios for multi-contrast MR image synthesis. 
First, we assumed that the images of the source and target 
contrasts are perfectly registered. For this scenario, we propose 
pGAN that incorporates a pixel-wise loss into the objective 
function as inspired by the pix2pix architecture [49]:  
 

            (4) 

 
where 𝐿2% is the pixel-wise L1 loss function. Since the 
generator 𝐺 was observed to ignore the latent variable in pGAN, 
the latent variable was removed from the model.  

Recent studies suggest that incorporation of a perceptual loss 
during network training can yield visually more realistic results 
in computer vision tasks. Unlike loss functions based on pixel-
wise differences, perceptual loss relies on differences in higher 
feature representations that are often extracted from networks 
pre-trained for more generic tasks [25]. A commonly used 
network is VGG-net trained on the ImageNet [56] dataset for 
object classification. Here, following [25], we extracted feature 
maps right before the second max-pooling operation of VGG16 
pre-trained on ImageNet. The resulting loss function can be 
written as: 
 

 (5) 

 
where  𝑉 is the set of feature maps extracted from VGG16.  

To synthesize each cross-section 𝑦 from 𝑥 we also leveraged 
correlated information across neighboring cross-sections by 
conditioning the networks not only on 𝑥 but also on the 
neighboring cross-sections of 𝑥. By incorporating the 
neighboring cross-sections (3), (4) and (5) become: 
 

 (6) 

 
 (7) 

 
 (8) 

 

L
condGAN

(D,G) = −E
x ,y[(D(x, y) −1)

2 ]

−E
x ,z[D(x,G(x, z))

2 ],

L
L1(G) = Ex ,y ,z[ y −G(x, z) 1],

L
Perc
(G) = E

x ,y[ V ( y) −V (G(x)) 1],

L
condGAN−k

(D,G) = −E
xk ,y
[(D(x

k
, y) −1)2 ]

−E
xk
[D(x

k
,G(x

k
))2 ],

LL1−k (G) = Exk ,y[ y −G(xk , z) 1],

LPerc−k (G) = Exk ,y[ V ( y) −V (G(xk )) 1],

 
Fig. 1.  The pGAN method is based on a conditional adversarial network with 
a generator G, a pre-trained VGG16 network V, and a discriminator D. Given 
an input image in a source contrast (e.g., T1-weighted), G learns to generate 
the image of the same anatomy in a target contrast (e.g., T2-weighted). 
Meanwhile, D learns to discriminate between synthetic (e.g., T1-G(T1)) and 
real (e.g., T1-T2) pairs of multi-contrast images. Both subnetworks are trained 
simultaneously, where G aims to minimize a pixel-wise, a perceptual and an 
adversarial loss function, and D tries to maximize the adversarial loss function. 
 

 
Fig. 2.  The cGAN method is based on a conditional adversarial network with 
two generators (GT1, GT2) and two discriminators (DT1, DT2). Given a T1-
weighted image, GT2 learns to generate the respective T2-weighted image of 
the same anatomy that is indiscriminable from real T2-weighted images of 
other anatomies, whereas DT2 learns to discriminate between synthetic and real 
T2-weighted images. Similarly, GT1 learns to generate realistic a T1-weighted 
image of an anatomy given the respective T2-weighted image, whereas DT1 
learns to discriminate between synthetic and real T1-weighted images. Since 
the discriminators do not compare target images of the same anatomy, a pixel-
wise loss cannot be used. Instead, a cycle-consistency loss is utilized to ensure 
that the trained generators enable reliable recovery of the source image from 
the generated target image. 
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where 𝒙5 = [𝑥789:;
,… , 𝑥7&, 𝑥7%, 𝑥, 𝑥7%, 𝑥7&,… , 𝑥>89:;

] is a vector 

consisting of 𝑘 consecutive cross-sections ranging from −85
&
; 

to 85
&
;, with the cross section 𝑥 in the middle, and 𝐿ABCD-./75 

and 𝐿2%75 are the corresponding adversarial and pixel-wise loss 
functions. This yields the following aggregate loss function:  

 
 (9) 

 
where 𝐿E-./ is the complete loss function, 𝜆 controls the 
relative weighing of the pixel-wise loss and 𝜆EGHA  controls the 
relative weighing of the perceptual loss. 

In the second scenario, we did not assume any explicit 
registration between the images of the source and target 
contrasts. In this case, the pixel-wise and perceptual losses 
cannot be leveraged since images of different contrasts are not 
necessarily spatially aligned. To limit the number of potential 
solutions for the synthesized image, here we proposed cGAN 
that incorporates a cycle-consistency loss as inspired by the 
cycleGAN architecture [50]. The cGAN method consists of two 
generators (𝐺I, 𝐺J) and two discriminators (𝐷I,𝐷J). 𝐺J tries to 
generate 𝐺J(𝑥) that looks similar to 𝑦 and 𝐷J tries to distinguish 
𝐺J(𝑥) from the images 𝑦. On the other hand, 𝐺I tries to generate 
𝐺I(𝑦) that looks similar to 𝑥 and 𝐷I tries to distinguish 𝐺I(𝑦) 
from the images 𝑥. This architecture incorporates an additional 
loss to ensure that the input and target images are consistent 
with each other, called the cycle consistency loss 𝐿AJAKG: 

 

 (10) 

 
This loss function enforces that property that after projecting 

the source images onto the target domain, the source image can 
be re-synthesized with minimal loss from the projection. Lastly, 
by incorporating the neighboring cross-sections, the cycle 
consistency and adversarial loss functions become:  
 

 (11) 

 

 (12) 

 
This yields the following aggregate loss function for training: 
 

 (13) 

 

where 𝐿A-./ is the complete loss function, and 𝜆AJAKG controls 
the relative weighing of the cycle consistency loss. 

While training both pGAN and cGAN, we made a minor 
modification in the adversarial loss function. As implemented 
in [50], the generator was trained to minimize 
𝐸I9[(𝐷L𝑥5,𝐺(𝑥5)M − 1)

&] instead of −𝐸I9[(𝐷L𝑥5,𝐺(𝑥5)M)
&]. 

B. MRI Datasets 
For registered images, we trained both pGAN and cGAN 

models. For unregistered images, we only trained cGAN 
models. The experiments were performed on three separate 
datasets: the MIDAS dataset [57], the IXI dataset (http://brain-
development.org/ixi-dataset/) and the BRATS dataset 
(https://sites.google.com/site/braintumorsegmentation/home/br
ats2015). MIDAS and IXI datasets contained data from healthy 
subjects, whereas the BRATS dataset contained data from 
patients with structural abnormality (i.e., brain tumor). For each 
dataset, subjects were sequentially selected in the order that 
they were shared on the public databases. Subjects with images 
containing severe motion-artifacts across the volume were 
excluded from selection.  The selected set of subjects were then 
sequentially split into training, validation and testing sets. 
Protocol information for each dataset is described below.   

MIDAS dataset:  T1- and T2-weighted images from 66 
subjects were analyzed, where 48 subjects were used for 
training, 5 were used for validation and 13 were used for testing. 
From each subject, approximately 75 axial cross sections that 
contained brain tissue and that were free of major artifacts were 
manually selected.  T1-weighted images: 3D gradient-echo 
FLASH sequence, TR=14ms, TE=7.7ms, flip angle=25o, 
matrix size=256x176, 1 mm isotropic resolution, axial 
orientation. T2-weighted images: 2D spin-echo sequence, 
TR=7730ms, TE=80ms, flip angle=90o, matrix size=256x192, 
1 mm isotropic resolution, axial orientation. 

IXI dataset: T1- and T2-weighted images from 40 subjects 
were analyzed, where 25 subjects were used for training, 5 were 
used for validation and 10 were used for testing. When T1-
weighted images were registered onto T2-weighted images, 
nearly 90 axial cross sections per subject that contained brain 
tissue and that were free of major artifacts were selected. When 
T2-weighted images were registered onto T1-weighted images, 
nearly 110 cross sections were selected. In this case due to poor 
registration quality we had to remove a test subject. T1-
weighted images: TR=9.813ms, TE=4.603ms, flip angle=8o, 
volume size = 256×256×150, voxel dimensions = 
0.94mm×0.94mm×1.2mm, sagittal orientation. T2-weighted 
images: TR=8178ms, TE=100ms, flip angle=90o, volume size 
= 256×256×150, voxel dimensions = 0.94×0.94×1.2 mm3, axial 
orientation. 

BRATS dataset: T1- and T2-weighted images from 41 low-
grade glioma patients with visible lesions were analyzed, where 
24 subjects were used for training, 2 were used for validation 
and 15 were used for testing. From each subject, approximately 
100 axial cross sections that contained brain tissue and that 
were free of major artifacts were manually selected. Different 
scanning protocols were employed on separate sites. 
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Note that each dataset comprises a different number of cross-
sections per subject, and we only retained cross-sections that 
contained brain tissue and that were free of major artifacts. As 
such, we varied the number of subjects across datasets to 
balance the total number of images used, resulting in 
approximately 4000-5000 images per dataset.  

Control analyses were performed to rule out biases due to the 
specific selection or number of subjects. To do this, we 
performed model comparisons using an identical number of 
subjects (40) within each dataset. This selection included 
nonoverlapping training, validation and testing sets, such that 
25 subjects were used for training, 5 for validation and 10 for 
testing.  In IXI, we sequentially selected a completely 
independent set of subjects from those reported in the main 
analyses. This selection was then sequentially split into 
training/validation/testing sets via a 4-fold cross-validation 
procedure. Since the number of subjects available was smaller 
in MIDAS and BRATS, we performed 4-fold cross-validation 
by randomly sampling nonoverlapping training, validation and 
testing sets in each fold. No overlap was allowed among testing 
sets across separate folds, or among the training, testing and 
validation sets within each fold. 

Data normalization: To prevent suboptimal model training 
and bias in quantitative assessments, datasets were normalized 
to ensure comparable ranges of voxel intensities across 
subjects. The multi-contrast MRI images in the IXI and MIDAS 
datasets were acquired using a single scan protocol. Therefore, 
for each contrast, voxel intensity was normalized within each 
subject to a scale of [0 1] via division by the maximum intensity 
within the brain volume. The protocol variability in the BRATS 
dataset was observed to cause large deviations in image 
intensity and contrast across subjects. Thus, for normalization, 
the mean intensity across the brain volume was normalized to 1 
within individual subjects. To attain an intensity scale in [0 1], 
three standard deviations above the mean intensity of voxels 
pooled across subjects was then mapped to 1. 

C. Image Registration  
For the first scenario, multi-contrast images from a given 

subject were assumed to be registered. Note that the images 
contained in the MIDAS and IXI datasets are unregistered. 
Thus, the T1- and T2-weighted images in these datasets were 
registered prior to network training. In the MIDAS dataset, the 
voxel dimensions for T1- and T2-weighted images were 
identical, so a rigid transformation based on a mutual 
information cost function was observed to yield high quality 
registration.  In the IXI dataset, however, voxel dimensions for 
T1- and T2-weighted images were quite distinct. For improved 
registration accuracy, we therefore used an affine 
transformation with higher degrees of freedom based on a 
mutual information cost in this case. No registration was needed 
for the BRATS dataset that was already registered. No 
registration was performed for the second scenario. All 
registrations were implemented in FSL [58], [59].  

D. Network Training  
Since we consider two different scenarios for multi-contrast 

MR image synthesis, network training procedures were distinct. 
In the first scenario, we assumed perfect alignment between the 

source and target images, and we then used pGAN to learn the 
mapping from the source to the target contrast. In a first variant 
of pGAN (k=1), the input image was a single cross-section of 
the source contrast, and the target was the respective cross-
section of the desired contrast. Note that neighboring cross 
sections in MR images are expected to show significant 
correlation. Thus, we reasoned that additional information from 
adjacent cross-sections in the source contrast should improve 
synthesis. To do this, a second variant of pGAN was 
implemented where multiple consecutive cross-sections (k=3, 
5, 7) of the source contrast were given as input, with the target 
corresponding to desired contrast at the central cross-section.  

For the pGAN network, we adopted the generator 
architecture from [25], and the discriminator architecture from 
[50] (see Supp. Methods for details). Tuning hyperparameters 
in deep neural networks, especially in complex models such as 
GANs, can be computationally intensive [60], [61]. Thus, it is 
quite common in deep learning research to perform one-fold 
cross-validation [30], [35] or even directly adopt 
hyperparameter selection from published work [24], [28], [29], 
[38], [48], [62]. For computational efficiency, here we selected 
the optimum weightings of loss functions and number of epochs 
by performing one-fold cross-validation. We partitioned the 
datasets into training, validation and test sets, each set 
containing images from distinct subjects. Multiple models were 
trained for varying number of epochs (in the range [100 200]) 
and relative weighting of the loss functions (λ in the set 
{10,100,150}, and λEGHA  in the set {10,100,150}). Parameters 
were selected based on the validation set, and performance was 
then assessed on the test set. Among the datasets here, IXI 
contains the highest-quality images with visibly lower noise 
and artifact levels compared to MIDAS and visibly sharper 
images compared to BRATS. To prevent overfitting to noise, 
artifacts or blurry images, we therefore performed cross-
validation of GAN models on IXI, and used the selected 
parameters in the remaining datasets. Weightings of both pixel-
wise and perceptual loss were selected as 100 and the number 
of epochs was set to 100 (the benefits of perceptual loss on 
synthesis performance are demonstrated in MIDAS and IXI; 
Supp. Table IV). Remaining hyperparameters were adopted 
from [50], where the Adam optimizer was used with a 
minibatch size of 1 [63]. In the first 50 epochs, the learning rates 
for the generator and discriminator were 0.0002. In the last 50 
epochs, the learning rate was linearly decayed from 0.0002 to 
0. During each iteration the discriminator loss function was 
halved to slow down the learning process of the discriminator. 
Decay rates for the first and second moments of gradient 
estimates were set as β1= 0.5 and β2=0.999, respectively. 
Instance normalization was applied [64]. All weights were 
initialized using normal distribution with 0 mean and 0.02 std.  

In the second scenario, we did not assume any alignment 
between the source and target images, and so we used cGAN to 
learn the mapping between unregistered source and target 
images (cGANunreg). Similar to pGAN, two variants of cGAN 
were considered that worked on a single cross-section (k=1) and 
on multiple consecutive cross-sections. Because training of 
cGAN brings substantial computational burden compared to 
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pGAN, we only examined k=3 for cGAN. This latter cGAN 
variant was implemented with multiple consecutive cross-
sections of the source contrast. Although cGAN does not 
assume alignment between the source and target domains, we 
wanted to examine the effects of loss functions used in cGAN 
and pGAN. For comparison purposes, we also trained separate 
cGAN networks on registered multi-contrast data (cGANreg). 
The cross-validation procedures, and the architectures of the 
generator and discriminator were identical to those for pGAN. 
Multiple models were trained for varying number of epochs (in 
the range [100 200]), and λAJAKG  in the set {10,100,150}). Model 
parameters were selected based on performance on the 
validation set, and model performance was then assessed on the 
test set. The relative weighting of the cycle consistency loss 
function was selected as 𝜆AJAKG=100, and the model was trained 
for 200 epochs. In the first 100 epochs, the learning rate for both 
networks were set to 0.0002, and in the remaining 100 epochs, 
the learning rate was linearly decayed from 0.0002 to 0. During 
each iteration the discriminator loss function was divided by 2 
to slow down the learning process of the discriminator. 

E. Competing Methods  
To demonstrate the proposed approach, two state-of-the-art 

methods for MRI image synthesis were implemented. The first 
method was Replica that estimates a nonlinear mapping from 
image patches in the source contrast onto individual voxels in 
the target contrast [23]. Replica extracts image features at 
different spatial scales, and then performs a multi-resolution 
analysis via random forests. The learned nonlinear mapping is 
then applied on test images. Code posted by the authors of the 
Replica method was used to train the models, based on the 
procedures/parameters described in [23].  

The second method was Multimodal that uses an end-to-end 
neural network to estimate the target image given the source 
image as input. A neural-network implementation implicitly 
performs multi-resolution feature extraction and synthesis 
based on these features. Trained networks can then be applied 
on test images. Code posted by the authors of the Multimodal 
method was used to train the models, based on 
procedures/parameters described in [21]. 

The proposed approach and the competing methods were 
compared on the same training and test data. Since the proposed 
models were implemented for unimodal mapping between two 
separate contrasts, Replica and Multimodal implementations 
were also performed with only two contrasts.  

F. Experiments 
1) Comparison of GAN-based models 

Here we first questioned whether the direction of registration 
between multi-contrast images affects the quality of synthesis. 
In particular, we generated multiple registered datasets from T1- 
and T2-weighted images. In the first set, T2-weighted images 
were registered onto T1-weighted images (yielding T2#). In the 
second set, T1-weighted images were registered onto T2-
weighted images (yielding T1#). In addition to the direction of 
registration, we also considered the two possible directions of 
synthesis (T2 from T1; T1 from T2).  

For MIDAS and IXI, the above-mentioned considerations led 
to four distinct cases: a) T1→T2#, b) T1#→T2, c) T2→T1#, d) 
T2#→T1. Here, T1 and T2 are unregistered images, T1# and T2# 
are registered images, and → corresponds to the direction of 
synthesis. For each case, pGAN and cGAN were trained based 
on two variants, one receiving a single cross-section, the other 
receiving multiple (3, 5 and 7) consecutive cross-sections as 
input. This resulted in a total of 32 pGAN and 12 cGAN models. 
Note that the single-cross section cGAN contains generators for 
both contrasts, and trains a model that can synthesize in both 
directions. For the multi cross-section cGAN, however, a 
separate model was trained for synthesis direction. For BRATS, 
no registration was needed, and this resulted in only two distinct 
cases for consideration: a) T1→T2 and d) T2→T1. A single 
variant of pGAN (k=3) and cGAN (k=1) was considered.  
2) Comparison to state-of-the-art methods 

To investigate how well the proposed methods perform with 
respect to state-of-the-art approaches, we compared the pGAN 
and cGAN models with Replica and Multimodal. Models were 
compared using the same training, and testing sets, and these 
sets comprised images from different groups of subjects. The 
synthesized images were compared with the true target images 
as reference. Both the synthesized and the reference images 
were normalized to a maximum intensity of 1. To assess the 
synthesis quality, we measured the peak signal-to-noise ratio 
(PSNR) and structural similarity index (SSIM) [65] metrics 
between the synthesized image and the reference.  
3) Spectral density analysis 

While PSNR and SSIM serve as common measures to 
evaluate overall quality, they primarily capture characteristics 
dominated by lower spatial frequencies. To examine synthesis 
quality across a broader range of frequencies, we used a spectral 
density similarity (SDS) metric. The rationale for SDS is 
similar to that for the error spectral plots demonstrated in [66], 
where error distribution is analyzed across spatial frequencies. 
To compute SDS, synthesized and reference images were 
transformed into k-space, and separated into four separate 
frequency bands: low (0-25%), intermediate (25-50%), high-
intermediate (50-75%), and high (75-100% of the maximum 
spatial frequency in k-space). Within each band, SDS was taken 
as the Pearson’s correlation between vectors of magnitude k-
space samples of the synthesized and reference images. To 
avoid bias from background noise, we masked out background 
regions to zero before calculating the quality measures.  
4) Generalizability 

To examine the generalizability of the proposed methods, we 
trained pGAN, cGAN, Replica and Multimodal on the IXI 
dataset and tested the trained models on the MIDAS dataset. 
The following cases were examined: T1→T2#, T1#→T2, T2→T1#, 
and T2#→T1. During testing, ten sample images were 
synthesized for a given source image, and the results were 
averaged to mitigate nuisance variability in individual samples. 
When T1-weighted images were registered onto T2-weighted 
images, within-cross-section voxel dimensions were isotropic 
for both datasets and no extra pre-processing step was needed. 
However, when T2-weighted images were registered, voxel 
dimensions were anisotropic for IXI yet isotropic for MIDAS. 
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To avoid spatial mismatch, voxel dimensions were matched via 
trilinear interpolation. Because a mismatch of voxel thickness 
in the cross-sectional dimension can deteriorate synthesis 
performance, single cross-section models were considered.  
5) Reliability against noise 

To examine the reliability of synthesis against image noise, 
we trained pGAN and Multimodal on noisy images. The IXI 
dataset was selected since it contains high-quality images with 
relatively low noise levels. Two separate sets of noisy images 
were then generated by adding Rician noise to the source and 
target contrast images respectively. The noise level was fixed 
within subjects and randomly varied across subjects by 
changing the Rician shape parameter in [0 0.2]. For noise-added 
target images, background masking was performed prior to 
training and no perceptual loss was used in pGAN to prevent 
overfitting to noise. Separate models were trained using noise-
added source and original target images, and using original 
source and noise-added target images.   

Statistical significance of differences among methods was 
assessed with nonparametric Wilcoxon signed-rank tests across 
test subjects. Neural network training and evaluation was 
performed on NVIDIA Titan X Pascal and Xp GPUs. 
Implementation of pGAN and cGAN was carried out in Python 
using the Pytorch framework [67]. Code for replicating the 
pGAN and cGAN models will be available on 
http://github.com/icon-lab/mrirecon. Replica was based on a 
MATLAB implementation, and a Keras implementation [68] of 
Multimodal with the Theano backend [69] was used. 

III. RESULTS 

A. Comparison of GAN-based models 
We first evaluated the proposed models on T1- and T2-

weighted images from the MIDAS and IXI datasets. We 
considered two cases for T2 synthesis (a. T1→T2#, b. T1#→T2, 
where # denotes the registered image), and two cases for T1 
synthesis (c. T2→T1#, d. T2#→T1). Table I lists PSNR and SSIM 
for pGAN, cGANreg trained on registered data, and cGANunreg 
trained on unregistered data in the MIDAS dataset. We find that 
pGAN outperforms cGANunreg and cGANreg in all cases 
(p<0.05). Representative results for T1→T2# are displayed in 
Fig. 3a and T2#→T1 are displayed in Supp. Fig. Ia, respectively. 
pGAN yields higher synthesis quality compared to cGANreg. 
Although cGANunreg was trained on unregistered images, it can 
faithfully capture fine-grained structure in the synthesized 
contrast. Overall, both pGAN and cGAN yield synthetic images 
of remarkable visual similarity to the reference. Supp. Tables II 
and III (k=1) lists PSNR and SSIM across test images for T2 
and T1 synthesis with both directions of registration in the IXI 
dataset. Note that there is substantial mismatch between the 
voxel dimensions of the source and target contrasts in the IXI 
dataset, so cGANunreg must map between the spatial sampling 
grids of the source and the target. Since this yielded suboptimal 
performance, measurements for cGANunreg are not reported. 
Overall, similar to the MIDAS dataset, we observed that pGAN 
outperforms the competing methods (p<0.05). On average, 
across the two datasets, pGAN achieves 1.42dB higher PSNR 

and 1.92% higher SSIM compared to cGAN.  These 
improvements can be attributed to pixel-wise and perceptual 
losses compared to cycle-consistency loss on paired images.  

In MR images, neighboring voxels can show structural 
correlations, so we reasoned that synthesis quality can be 
improved by pooling information across cross sections. To 

 
Fig. 3.  The proposed approach was demonstrated for synthesis of T2-weighted 
images from T1-weighted images in the MIDAS dataset. Synthesis was 
performed with pGAN, cGAN trained on registered images (cGANreg), and 
cGAN trained on unregistered images (cGANunreg). For pGAN and cGANreg, 
training was performed using T2-weighted images registered onto T1-weighted 
images (T1→T2#). Synthesis results for (a) the single cross-section, and (b) 
multi cross-section models are shown along with the true target image 
(reference) and the source image (source). Zoomed-in portions of the images 
are also displayed. While both pGAN and cGAN yield synthetic images of 
striking visual similarity to the reference, pGAN is the top performer. Synthesis 
quality is improved as information across neighboring cross sections is 
incorporated, particularly for the pGAN method. 

TABLE I 
QUALITY OF SYNTHESIS IN THE MIDAS DATASET  

SINGLE CROSS-SECTION MODELS  

 
cGANunreg cGANreg pGAN 

SSIM PSNR SSIM PSNR SSIM PSNR 

T1 ® T2# 
0.829 
±0.017 

23.66 
±0.632 

0.895 
±0.014 

26.56 
±0.432 

0.920 
±0.014 

28.79 
±0.580 

T1# ® T2 
0.823 
±0.021 

23.85 
±0.420 

0.854 
±0.024 

25.47 
±0.556 

0.876 
±0.028 

27.07 
±0.618 

T2 ® T1# 
0.826 
±0.015 

23.20 
±0.503 

0.892 
±0.017 

26.53 
±1.169 

0.912 
±0.017 

27.81 
±1.424 

T2# ® T1 
0.821 
±0.021 

22.56 
±1.008 

0.863 
±0.022 

26.15 
±0.974 

0.883 
±0.023 

27.31 
±0.983 

T1# is registered onto the respective T2 image; and T2# is registered onto the 
respective T1 image; and ® indicates the direction of synthesis. PSNR and 
SSIM measurements are reported as mean±std across test images. Boldface 
marks the model with the highest performance. 

 
TABLE II 

QUALITY OF SYNTHESIS IN THE MIDAS DATASET  
MULTI CROSS-SECTION MODELS (K=3) 

 
cGANunreg cGANreg pGAN 

SSIM PSNR SSIM PSNR SSIM PSNR 

T1 ® T2# 
0.829 
±0.016 

23.65 
±0.650 

0.895 
±0.014 

26.62 
±0.489 

0.926 
±0.014 

29.34 
±0.592 

T1# ® T2 
0.797 
±0.027 

23.37 
±0.604 

0.862 
±0.022 

25.83 
±0.384 

0.883 
±0.027 

27.49 
±0.643 

T2 ® T1# 
0.824 
±0.015 

24.00 
±0.628 

0.900 
±0.017 

27.04 
±1.238 

0.920 
±0.016 

28.16 
±1.303 

T2# ® T1 
0.805 
±0.021 

23.55 
±0.782 

0.864 
±0.022 

26.44 
±0.871 

0.887 
±0.023 

27.42 
±1.127 

Boldface marks the model with the highest performance. 
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examine this issue, we trained multi cross-section pGAN (k=3, 
5, 7), cGANreg and cGANunreg models (k=3; see Methods) on 
the MIDAS and IXI datasets. PSNR and SSIM measurements 
for pGAN are listed in Supp. Table II, and those for cGAN are 
listed in Supp. Table III. For pGAN, multi cross-section models 
yield enhanced synthesis quality in all cases. Overall, k=3 offers 
optimal or near-optimal performance while maintaining 
relatively low model complexity, so k=3 was considered 
thereafter for pGAN. The results are more variable for cGAN, 
with the multi-cross section model yielding a modest 
improvement only in some cases. To minimize model 
complexity, k=1 was considered for cGAN.  

Table II compares PSNR and SSIM of multi cross-section 
pGAN and cGAN models for T2 and T1 synthesis in the MIDAS 
dataset. Representative results for T1→T2# are shown in Fig. 3b 
and T2#→T1 are shown in Supp. Fig. Ib. Among multi cross-
section models, pGAN outperforms alternatives in PSNR and 
SSIM (p<0.05), except for SSIM in T2#→T1. Moreover, 
compared to the single cross-section pGAN, the multi cross-
section pGAN improves PSNR and SSIM values. These 
measurements are also affirmed by improvements in visual 
quality for the multi cross-section model in Fig. 3 and Supp. 
Fig. I. In contrast, the benefits are less clear for cGAN. Note 
that, unlike pGAN that works on paired images, the 
discriminators in cGAN work on unpaired images from the 
source and target domains. In turn, this can render incorporation 
of correlated information across cross sections less effective. 
Supp. Tables II and III compare PSNR and SSIM of multi cross-
section pGAN and cGAN models for T2 and T1 synthesis in the 
IXI dataset. The multi cross-section pGAN outperforms 
cGANreg in all cases (p<0.05). Moreover, the multi cross-
section pGAN outperforms the single cross-section pGAN in 
all cases (p<0.05), except in T1→T2#. On average, across the 
two datasets, multi cross-section pGAN achieves 0.63dB higher 
PSNR and 0.89% higher SSIM compared to single cross-
section pGAN.  

B. Comparison to state-of-the-art methods 
Next, we demonstrated the proposed methods against two 

state-of-the-art techniques for multi-contrast MRI synthesis, 
Replica and Multimodal. We trained pGAN, cGANreg, Replica, 
and Multimodal on T1- and T2-weighted brain images in the 
MIDAS and IXI datasets. Note that Replica performs ensemble 
averaging across random forest trees and Multimodal uses 
mean-squared error measures that can lead to overemphasis of 
low frequency information. In contrast, conditional GANs use 
loss functions that can more effectively capture details in the 
intermediate to high spatial frequency range. Thus, pGAN 
should synthesize sharper and more realistic images as 
compared to the competing methods. Table III lists PSNR and 
SSIM for pGAN, Replica and Multimodal (cGANreg listed in 
Supp. Table I) in the MIDAS dataset. Overall, pGAN 
outperforms the competing methods in all examined cases 
(p<0.05), except for SSIM in T2 synthesis, where pGAN and 
Multimodal perform similarly. The proposed method is 
superior in depiction of detailed tissue structure as visible in 
Supp. Fig. II (for comparisons in coronal and sagittal cross-

 
Fig. 4.  The proposed approach was demonstrated for synthesis of T1-weighted 
images from T2-weighted images in the IXI dataset. T2→T1# and T2#→T1 
synthesis were performed with pGAN, Multimodal and Replica. Synthesis 
results for (a) T2→T1#, and (b) T2#→T1 along with their corresponding error 
maps are shown along with the true target image (reference) and the source 
image (source). The proposed method outperforms competing methods in 
terms of synthesis quality. Regions that are inaccurately synthesized by the 
competing methods are reliably depicted by pGAN (marked with arrows). The 
use of adversarial loss enables improved accuracy in synthesis of 
intermediate-spatial-frequency texture in T2-weighted images compared to 
Multimodal and Replica that show some degree of blurring. 

 
Fig. 5.  The proposed approach was demonstrated on glioma patients for 
synthesis of T2-weighted images from T1-weighted images, and T2-weighted 
images from T1-weighted images in the BRATS dataset. Synthesis results for 
(a) T1→T2, and (b) T1→T2 along with their corresponding error maps are 
shown along with the true target image (reference) and the source image 
(source). Regions of inaccurate synthesis with Replica and Multimodal are 
observed near pathologies (marked with arrows). Meanwhile, the pGAN 
method enables reliable synthesis with visibly improved depiction of 
intermediate spatial frequency information. 
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sections see Supp. Figs. IV, V). Table IV lists PSNR and SSIM 
across test images synthesized via pGAN, Replica and 
Multimodal (cGANreg listed in Supp. Table I) for the IXI 
dataset. Overall, pGAN outperforms the competing methods in 
all examined cases (p<0.05). The proposed method is superior 
in depiction of detailed tissue structure as visible in Fig. 4 and 
Supp. Fig. III (see also Supp. Figs. IV, V).  

Following assessments on datasets comprising healthy 
subjects, we demonstrated the performance of the proposed 
methods on patients with pathology. To do this, we trained and 
tested pGAN, cGANreg, Replica, and Multimodal on T1- and T2-
weighted brain images from the BRATS dataset. Similar to the 
previous evaluations, here we expected that the proposed 
method would synthesize more realistic images with improved 
preservation of fine-grained tissue structure. Table V lists 
PSNR and SSIM across test images synthesized via pGAN, 
Replica and Multimodal (cGANreg listed in Supp. Table I; for 
measurements on background-removed images in MIDAS, IXI 
and BRATS see Supp. Table V). Overall, pGAN is the top 
performing method in all cases (p<0.05), except for SSIM in 
T1→T2 where pGAN and Multimodal perform similarly. 
Moreover, cGAN performs favorably in PSNR over competing 
methods. Representative images for T2 and T1 synthesis are 
displayed in Fig. 5 (see also Supp. Figs. IV, V). It is observed 
that regions near pathologies are inaccurately synthesized by 
Replica and Multimodal. Meanwhile, the pGAN method 
enables reliable synthesis with visibly improved depiction of 
structural details. Across the datasets, pGAN outperforms the 
state-of-the-art methods by 2.85dB PSNR and 1.23% SSIM.  

Next, we performed additional control analyses via 4-fold 
cross validation to rule out potential biases due to subject 
selection. Supp. Tables IX-XI list PSNR and SSIM across test 
images synthesized via pGAN and Multimodal separately for 
all 4 folds. We find that there is minimal variability in pGAN 
performance across folds. Across the datasets, pGAN 
variability is merely 0.70% in PSNR and 0.37% in SSIM, 
compared to Multimodal variability of 2.26% in PSNR and 
0.46% in SSIM. The results of these control analyses are also 
highly consistent with those in the original set of subjects 
reported in Supp. Table I. We find that there is minimal 
variability in pGAN performance between the main and control 
analyses. Across the datasets, pGAN variability is 1.42% in 
PSNR and 0.73% in SSIM, compared to Multimodal variability 
of 2.98% in PSNR and 0.97% in SSIM.  

C. Spectral density analysis 
To corroborate visual observations regarding improved 

depiction of structural details, we measured spectral density 
similarity (SDS) between synthesized and reference images 
across low, intermediate, high-intermediate and high spatial 
frequencies (see Methods). Fig. 6 shows filtered versions of a 
T1-weighted image in the MIDAS dataset, where the filter is 
broadened sequentially to include higher frequencies so as to 
visualize the contribution of individual bands. Intermediate and 
high-intermediate frequencies primarily correspond to edges 
and other structural details in MR images, so we expected 
pGAN to outperform competing methods in these bands. Fig. 7 

shows representative synthesis results in the image and spatial 
frequency (k-space) domains. Supp. Table VI lists SDS across 
the test images synthesized via pGAN, cGANreg, Replica and 
Multimodal in the all datasets. In the MIDAS dataset, pGAN 
outperforms the competing methods at low and intermediate 
frequencies (p<0.05), except in T1 synthesis where it performs 
similarly to Multimodal. In the IXI dataset, pGAN yields 
superior performance to competing methods in all frequency 
bands (p<0.05). In the BRATS dataset, pGAN achieves higher 
SDS than the competing methods at low, intermediate and high-
intermediate frequencies in T2 synthesis and at low frequencies 
in T1 synthesis (p<0.05). Across the datasets, pGAN 
outperforms the state-of-the-art methods by 0.056 at low, 0.061 
at intermediate and 0.030 at high-intermediate frequencies.  

D. Generalizability 
Next, we examined synthesis methods in terms of their 

generalization performance. Supp. Table VII lists SSIM and 
PSNR for pGAN, cGANreg, Replica and Multimodal trained on 
the IXI dataset and tested on the MIDAS dataset. Overall, the 
proposed methods are the top performers. In T1→T2#, 
Multimodal is the leading performer with 1.9% higher SSIM 
SSIM (p<0.05) than pGAN. In T1#→T2, pGAN outperforms 
competing methods in PSNR (p<0.05). In T2→T1#, pGAN is 
again the leading performer with 1.9% higher SSIM (p<0.05) 
than Multimodal. In T2#→T1, cGANreg is the leading performer 

TABLE III 
A - QUALITY OF SYNTHESIS IN THE MIDAS DATASET  

 
pGAN Replica Multimodal 

SSIM PSNR SSIM PSNR SSIM PSNR 

T1 ® T2# 
0.926 
±0.014 

29.34 
±0.592 

0.877 
±0.027 

26.18 
±0.638 

0.924 
±0.012 

28.33 
±0.501 

T1# ® T2 
0.883 
±0.027 

27.49 
±0.643 

0.838 
±0.039 

25.27 
±0.468 

0.889 
±0.020 

26.73 
±0.461 

T2 ® T1# 
0.920 
±0.016 

28.16 
±1.303 

0.840 
±0.028 

20.00 
±1.207 

0.886 
±0.022 

22.13 
±1.325 

T2# ®T1 
0.887 
±0.023 

27.42 
±1.127 

0.827 
±0.031 

20.29 
±1.066 

0.872 
±0.020 

23.08 
±1.280 

Boldface marks the model with the highest performance. 
 

TABLE IV 
QUALITY OF SYNTHESIS IN THE IXI DATASET  

 
pGAN Replica Multimodal 

SSIM PSNR SSIM PSNR SSIM PSNR 

T1 ® T2# 
0.948 
±0.014 

29.77 
±1.568 

0.912 
±0.028 

25.40 
±2.084 

0.936 
±0.015 

27.72 
±0.910 

T1# ® T2 
0.917 
±0.012 

27.89 
±0.887 

0.863 
±0.023 

24.08 
±1.427 

0.898 
±0.014 

26.11 
±0.769 

T2 ® T1# 
0.926 
±0.013 

27.27 
±0.960 

0.865 
±0.013 

20.46 
±0.921 

0.895 
±0.015 

22.61 
±1.105 

T2# ®T1 
0.953 
±0.012 

29.55 
±1.423 

0.887 
±0.033 

21.82 
±1.600 

0.936 
±0.017 

25.91 
±1.689 

Boldface marks the model with the highest performance. 
 

TABLE V 
QUALITY OF SYNTHESIS IN THE BRATS DATASET  

 
pGAN Replica Multimodal 

SSIM PSNR SSIM PSNR SSIM PSNR 
T1 ® 

T2 
0.946 
±0.009 

27.19 
±1.456 

0.924 
±0.014 

24.64 
±1.615 

0.939 
±0.011 

25.09 
±1.013 

T2 ® 
T1 

0.940 
±0.009 

25.80 
±1.867 

0.917 
±0.007 

24.49 
±1.230 

0.935 
±0.010 

23.78 
±2.080 

Boldface marks the model with the highest performance. 
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with 1.22dB higher PSNR (p<0.05) SSIM than pGAN. We also 
assessed the level of performance degradation between within-
dataset synthesis (trained and tested on MIDAS) and across-
dataset synthesis (trained on IXI, tested on MIDAS). Overall, 
pGAN and Multimodal show similar degradation levels. While 
pGAN is the top performer in terms of SSIM, cGAN yields a 
modest advantage in PSNR. On average, percentage 
degradation is 20.83% in PSNR and 11.70% in SSIM for 
pGAN, 22.22% in PSNR and 10.12% in SSIM for Multimodal, 
15.85% in PSNR and 12.85% in SSIM for cGANreg, and 
11.40% in PSNR and 14.51% in SSIM for Replica. Note that 
percentage degradation in PSNR is inherently limited for 
Replica, which yields low PSNR for within-dataset synthesis.  

E. Reliability against noise 
Lastly, we examined reliability of synthesis against noise 

(Supp. Fig. VI). Supp. Table VIII list SSIM and PSNR for 
pGAN and Multimodal trained on noise-added source and 
target images from IXI, respectively. For noisy source images, 
pGAN outperforms Multimodal in all examined cases (p<0.05) 
except for SSIM in T1→T2#. On average, pGAN achieves 
1.74dB higher PSNR and 2.20% higher SSIM than Multimodal. 
For noisy target images, pGAN is the top performer in PSNR in 
T1#→T2, T2→T1# (p<0.05) and performs similarly to 
Multimodal in the remaining cases. On average, pGAN 
improves PSNR by 0.61dB. (Note, however, that for noisy 
target images, reference-based quality measurements are biased 
by noise particularly towards higher frequency bands; see Supp. 
Fig. VII.) Naturally, synthesis performance is lowered in the 

presence of noise. We assessed the performance degradation 
when the models were trained on noise-added images as 
compared to when the models were trained on original images. 
Overall, pGAN and Multimodal show similar performance 
degradation with noise. For noisy source images, degradation is 
5.27% in PSNR and 2.17% in SSIM for pGAN, and 3.77% in 
PSNR, 2.66% in SSIM for Multimodal. For noisy target images, 
degradation is 16.70% in PSNR and 12.91% in SSIM for 
pGAN, and 15.19% in PSNR, 10.06% in SSIM for Multimodal.  

IV. DISCUSSION 
A multi-contrast MRI synthesis approach based on 

conditional GANs was demonstrated against state-of-the-art 
methods in three publicly available brain MRI datasets. The 
proposed pGAN method uses adversarial loss functions and 
correlated structure across neighboring cross-sections for 
improved synthesis. While many previous methods require 
registered multi-contrast images for training, a cGAN method 
was presented that uses cycle-consistency loss for learning to 
synthesize from unregistered images. Comprehensive 
evaluations were performed for two distinct scenarios where 
training images were registered and unregistered. Overall, both 
proposed methods yield synthetic images of remarkable visual 
similarity to reference images, and pGAN visually and 
quantitatively improves synthesis quality compared to state-of-
the-art methods [21], [23]. These promising results warrant 
future studies on broad clinical populations to fully examine  
diagnostic quality of synthesized images in pathological cases. 

Several previous studies proposed the use of neural networks 
for multi-contrast MRI synthesis tasks [13], [19]–[21], [24]. A 
recent method, Multimodal, was demonstrated to yield higher 
quality compared to conventional methods in brain MRI 
datasets [21]. Unlike conventional neural networks, the GAN 
architectures proposed here are generative networks that learn 
the conditional probability distribution of the target contrast 
given the source contrast. The incorporation of adversarial loss 
as opposed to typical squared or absolute error loss leads to 
enhanced capture of detailed texture information about the 
target contrast, thereby enabling higher synthesis quality. 

While our synthesis approach was primarily demonstrated 
for multi-contrast brain MRI here, architectures similar to 
pGAN and cGAN have been proposed in other medical image 
synthesis applications such as cross-modality synthesis or data 
augmentation [28], [29], [33]–[36], [38]–[42], [48]. The 
discussions below highlight key differences between the current 
study and previous work:  

(1) [29], [40], [42], [48] proposed conditional GANs for 
cross-modality synthesis applications. One important proposed 
application is CT to PET synthesis [29], [40]. For instance, [29] 
fused the output of GANs and convolutional networks to 
enhance tumor detection performance from synthesized 
images; and [40] demonstrated competitive tumor detection 
results from synthesized versus real images. Another important 
application is MR to CT synthesis [42], [48]. In [42], [48], 
patch-based GANs were used for locally-aware synthesis, and 
contextual information was incorporated by training an 
ensemble of GAN models recurrently. Our approach differs in 

 
Fig. 6. The T1-weighted image of a sample cross-section from the MIDAS 
dataset was processed with an ideal filter in k-space. The filter was broadened 
sequentially to include higher frequencies (0-25%, 0-50%, 0-75%, 0-100% of 
the maximum spatial frequency). The filtered images respectively show the 
contribution of low, intermediate, high-intermediate and high frequency bands. 
The bulk shape and contrast of the imaged object is captured in the low 
frequency band, whereas the fine structural details such as edges are captured 
in the intermediate and partly high-intermediate frequency bands. There is no 
apparent contribution from the high frequency band. 

 
Fig. 7. Synthesis results are shown for a sample cross section from the IXI 
dataset along with the true target (reference) and the source image (source).  
Images shown in (a) the spatial domain (b) the spatial-frequency (k-space) 
domain. White circular boundaries in the k-space representation of the source 
delineate the boundaries of the low, intermediate, high-intermediate and high 
frequency bands. The pGAN method more accurately synthesizes the target 
image as evidenced by the better match in energy distribution across k-space. 
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the following aspects: (i) Rather than cross-modality image 
synthesis, we focus on within-modality synthesis in multi-
contrast MRI. MRI provides excellent delineation among soft 
tissues in the brain and elsewhere, with the diversity of contrasts 
that it can capture [70]. Therefore, synthesizing a specific MRI 
contrast given another poses a different set of challenges than 
performing MR-CT or CT-PET synthesis where CT/PET shows 
relatively limited contrast among soft tissues [71]. (ii) We 
demonstrate multi-cross section models to leverage correlated 
information across neighboring cross-sections within a volume. 
(iii) We demonstrate pGAN based on both pixel-wise and 
perceptual losses to enhance synthesis quality.  

(2) Architectures similar to cGAN with cycle-consistency 
loss were recently proposed to address the scarcity of paired 
training data in MR-CT synthesis tasks [28], [33], [36], [38], 
[39]. [33] also utilized a gradient-consistency loss to enhance 
the segmentation performance on CT images synthesized from 
MR data. [36] performed data-augmentation for enhanced 
segmentation performance using MR images synthesized from 
CT data. [39] coupled synthesis and segmentation networks to 
perform improved segmentation on synthesized CT images 
using MR labels. Our work differs in the following aspects: (i) 
As aforementioned, we consider within-modality synthesis as 
opposed to cross-modality synthesis. (ii) We consider paired 
image synthesis with cGAN to comparatively evaluate its 
performance against two state-of-the-art methods (Replica and 
Multimodal) for paired image synthesis.  

(3) An architecture resembling pGAN was proposed for 
synthesizing retinal images acquired with fundus photography 
given tabular structural annotations [41]. Similar to pGAN, this 
previous study incorporated a perceptual loss to improve 
synthesis quality. Our work differs in the following aspects: (i) 
Synthesis of vascular fundus images in the retina given 
annotations is a distinct task than synthesis of a target MR 
contrast given another source MR contrast in the brain. Unlike 
the relatively focused delineation between vascular structures 
and background in retinal images, in our case, there are multiple 
distinct types of brain tissues that appear at divergent signal 
levels in separate MR contrasts [71]. (ii) We demonstrate multi-
cross section models to leverage correlated information across 
neighboring cross-sections within an MRI volume. 

(4) A recent study suggested the use of multiple cross-
sections during MR-to-CT synthesis [72]. In comparison to 
[72], our approach is different in that: (i) We incorporate an 
adversarial loss function to better preserve intermediate-to-high 
frequency details in the synthesized images. (ii) We perform 
task- and model-specific optimization of the number of cross-
section considering both computational complexity and 
performance. (iii) As aforementioned, we consider within-
modality synthesis as opposed to cross-modality synthesis. 

Few recent studies have independently proposed GAN 
models for multi-contrast MRI synthesis [62], [73], [74]. 
Perhaps, the closest to our approach are [62] and [73] where 
conditional GANs with pixel-wise loss were used for improved 
segmentation based on synthesized FLAIR, T1- and T2-
weighted images. Our work differs from these studies in the 
following aspects: (i) We demonstrate improved multi-contrast 

MRI synthesis via cycle-consistency loss to cope with un-
registered images. (ii) We demonstrate improved multi-contrast 
synthesis performance via the inclusion of a perceptual loss to 
pGAN. (iii) We demonstrate multiple cross-section models to 
leverage correlated information across neighboring cross-
sections within multi-contrast MRI volumes. (iv) We 
quantitatively demonstrate that conditional GANs better 
preserve detailed tissue structure in synthesized multi-contrast 
images compared to conventional methods [21], [23].  

The proposed approach might be further improved by 
considering several lines of development. Here we presented 
multi-contrast MRI results while considering two potential 
directions for image registration (T1→T2# and T1#→T2 for T2 
synthesis). We observed that the proposed methods yielded 
high-quality synthesis regardless of the registration direction. 
Comparisons between the two directions based on reference-
based metrics are not informative because the references are 
inevitably distinct (e.g., T2# versus T2), so determining the 
optimal direction is challenging. Yet, with substantial mismatch 
between the voxel sizes in the source and target contrasts, the 
cGAN method learns to interpolate between the spatial 
sampling grids of the source and the target. To alleviate 
performance loss, a simple solution is to resample each contrast 
separately to match the voxel dimensions. Alternatively, the 
spatial transformation between the source and target images can 
first be estimated via multi-modal registration [75]. The 
estimated transformation can then be cascaded to the output of 
cGAN. A gradient cycle consistency loss can also be 
incorporated to prevent the network from learning the spatial 
transformation between the source and the target [33]. Another 
cause for performance loss arises when MR images for a given 
contrast are corrupted by higher levels of noise than typical. Our 
analyses on noise-added images imply a certain degree of 
reliability against moderate noise in T1- or T2-weighted images. 
However, an additional denoising network could be 
incorporated to earlier layers in GAN models when source 
images have higher noise, and to later layers when target images 
have elevated noise  [76].  

Synthesis accuracy can also be improved by generalizing the 
current approach to predict the target based on multiple source 
contrasts. In principle, both pGAN and cGAN can receive as 
input multiple source contrasts in addition to multiple cross 
sections as demonstrated here. In turn, this generalization can 
offer improved performance when a subset of the source 
contrast is unavailable. The performance of conditional GAN 
architectures in the face of missing inputs warrants further 
investigation. Alternatively, an initial fusion step can be 
incorporated that combines multi-contrast source images in the 
form of a single fused image fed as input to the GAN [77].  

Our analyses on noise-added images indicate that, for target 
contrasts that are inherently noisier, a downweighing of 
perceptual loss might be necessary. The proposed models 
include a hyperparameter for adjusting the relative weighing of 
the perceptual loss against other loss terms. Thus, a cross-
validation procedure can be performed for the specific set of 
source-target contrasts at hand to optimize model parameters. It 
remains important future work to assess the optimal weighing 
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of perceptual loss as a function of noise level for specific 
contrasts. Alternatively, denoising can be included as a 
preprocessing step to improve reliability against noise. Note 
that such denoising has recently been proposed for learning-
based sampling pattern optimization in MRI [78]. 

An important concern regarding neural-network based 
methods is the availability of large datasets for successful 
training. The cGAN method facilitates network training by 
permitting the use of unregistered and unpaired multi-contrast 
datasets. While here we performed training on paired images 
for unbiased comparison, cGAN permits the use of unpaired 
images from distinct sets of subjects. As such, it can facilitate 
compilation of large datasets that would be required for 
improved performance via deeper networks. Yet, further 
performance improvements may be viable by training networks 
based on a mixture of paired and unpaired training data [15]. 

Recently, cross-modality synthesis with GANs was 
leveraged as a pre-processing step to enhance various medical 
imaging tasks such as segmentation, classification or tumor 
detection [29], [33], [36], [39], [40], [79], [80]. For instance, 
[29] fused the output of GANs and convolutional networks to 
enhance tumor detection from synthesized PET images, and 
[40] demonstrated competitive detection performance with real 
versus synthesized PET images. [33] trained GANs based on 
cycle-consistency loss to enhance segmentation performance 
from synthesized CT images. [36] showed that incorporating 
synthesized MR images with the real ones can improve the 
performance of a segmentation network [39]. GANs also 
showed enhanced performance in liver lesion classification in 
synthetic CT [79], and chest pathology classification in 
synthetic X-ray images [80]. These previous reports suggest 
that the multi-contrast MRI synthesis methods proposed here 
might also improve similar post-processing tasks. It remains 
future work to assess to what extent improvements in synthesis 
quality translate to tasks such as segmentation or detection.  

V. CONCLUSION 
We proposed a new multi-contrast MRI synthesis method 

based on conditional generative adversarial networks. Unlike 
most conventional methods, the proposed method performs 
end-to-end training of GANs that synthesize the target contrast 
given images of the source contrast. The use of adversarial loss 
functions improves accuracy in synthesis of detailed structural 
information in the target contrast. Synthesis performance is 
further improved by incorporating pixel-wise and perceptual 
losses in the case of registered images, and a cycle-consistency 
loss for unregistered images. Finally, the proposed method 
leverages information across neighboring cross-sections within 
each volume to increase accuracy of synthesis. The proposed 
method outperformed state-of-the-art synthesis methods in 
multi-contrast brain MRI datasets from healthy subjects and 
glioma patients. Given the prohibitive costs of prolonged exams 
due to repeated acquisitions, only a subset contrasts might be 
collected with adequate quality, particularly in pediatric and 
elderly patients and in large cohorts [1], [3]. Multi-contrast MRI 
synthesis might be helpful in those worst-case situations by 
offering a substitute for highly-corrupted or even unavailable 

contrasts. Therefore, our GAN-based approach holds great 
promise for improving the diagnostic information available in 
clinical multi-contrast MRI.  
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