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Abstract

In recent years, visual saliency estimation in images has
attracted much attention in the computer vision community.
However, predicting saliency in videos has received rela-
tively little attention. Inspired by the recent success of deep
convolutional neural networks based static saliency mod-
els, in this work, we study two different two-stream convo-
lutional networks for dynamic saliency prediction. To im-
prove the generalization capability of our models, we also
introduce a novel, empirically grounded data augmenta-
tion technique for this task. We test our models on DIEM
dataset and report superior results against the existing mod-
els. Moreover, we perform transfer learning experiments on
SALICON, a recently proposed static saliency dataset, by
finetuning our models on the optical flows estimated from
static images. Our experiments show that taking motion
into account in this way can be helpful for static saliency
estimation.

1. Introduction
Visual saliency models have gained significant popular-

ity in recent years. The reason behind this growing in-
terest lies in the effective use of these models in various
computer vision problems such as segmentation, object de-
tection, video summarization and compression where ex-
tracted saliency maps are employed either as a visual fea-
ture or as a feature selection mechanism. Broadly speaking,
saliency models can be split into two categories in terms of
whether they try to predict human eye fixations [2] or detect
salient objects [1]. The models can be further divided into
static and dynamic saliency models according to which type
of input they process. While static models take still images
as input, dynamic models work on video sequences.

Predicting saliency in videos poses great challenges for
researchers as compared to performing the same task in still
images. First and foremost, the dynamic models need to
consider both the spatial and the temporal characteristics
of the scene when computing saliency maps. While static

saliency models employ visual features such as intensity,
color and orientation, for the dynamic saliency one need to
focus more on the motion features since humans have a ten-
dency to fixate their eyes on the objects in motion. In that
regard, the early examples of the dynamic saliency mod-
els extend the static saliency models so that they take into
account additional motion features [8, 7, 5, 30]. In addi-
tion, there are a limited number of dynamic saliency mod-
els which approach the saliency prediction in videos from a
novel point of view [10, 23, 29].

There is a recent interest in applying deep learning to
saliency prediction in still images [19, 25, 18, 32, 37].
These models all employ deep neural networks, and give the
state-of-the-art results in most of the benchmark datasets. In
this paper, our contributions are three-fold. First, inspired
by the success of these models, we investigate convolutional
neural networks for dynamic saliency prediction. We study
the use of two-stream convolutional neural network archi-
tectures which integrate the spatial stream with the temporal
stream. These network models predict a saliency map for a
given video frame by simultaneously exploiting the appear-
ance and motion information via filters learned in an end-to-
end fashion. In particular, we propose two different models
which consider late or early fusion strategies. To our knowl-
edge, we are the first to apply a two-stream deep model for
dynamic saliency. Second, we propose a data augmentation
technique for this task to improve the generalization of the
convolutional networks. Experiments on DIEM dataset [24]
validate the effectiveness of our models and our data aug-
mentation strategy. Third, we demonstrate transfer learning
could be used to predict static saliency by exploitin optical
flow information extracted from still images [33]. Experi-
ments on SALICON dataset [13] show that taking motion
into account can improve the prediction accuracy.

2. Related Work
Saliency estimation models in the literature are gen-

erally classified into two main groups as bottom-up ap-
proaches [22, 26, 35] and top-down approaches [16, 36].
Bottom-up approaches usually try to identify the salient re-
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gions where humans fixate their eyes in an image by using
low-level visual cues such as color, intensity, orientation
and they don’t employ any prior information about image
content and context. In contrast, top-down approaches di-
rectly use semantic cues related to context and content in-
formation about scenes, and generally consider a specific
task such as finding a person in a scene.

In this study, we are interested in task-free bottom-up
modeling of visual attention for dynamic scenes. The early
models of dynamic saliency extend the static saliency mod-
els to include motion features. For example, Cui et al. [5]
identify salient parts of a video frame via a frequency mod-
ulated model. In particular, they carry out a spectral residual
analysis on the Fourier spectrum of a video frame along the
spatial and temporal planes to extract the foreground objects
in motion from the background. Guo et al. [7] perform a
similar spectral analysis on the phase spectrum of the video
frames. Harel et al. [8] propose a saliency model where the
extracted feature maps are represented by means of fully
connected graphs and the final saliency map is estimated
via a graph-theoretic approach. Seo and Milanfar [30] em-
ploy self similarities of spatio-temporal volumes to predict
saliency.

Some researchers devise novel models that are specifi-
cally designed for dynamic saliency. For instance, Hou [10]
propose a model which takes into account rarity of visual
features and extracts saliency maps by performing entropy
maximization over the extracted visual features. Mathe et
al. [23] formulate the dynamic saliency prediction as a clas-
sification task and propose a learning-based saliency model
to integrate several visual cues. In another study, Rudoy
et al. [29] also propose a learning based framework for
saliency prediction. Their formulation differs from Mathe
et al.’s model [23] in the sense that they consider a sparse
set of gaze locations thorough which they try to predict con-
ditional gaze transitions over consecutive video frames.

In recent years, deep neural networks have been applied
to many computer vision problems such as image classi-
fication [9], object detection [6], activity recognition [38],
semantic segmentation [21]and video classification [15],
giving superior results. These approaches perform hier-
archical feature learning for a particular task, which gen-
erally provide better results than the handcrafted features.
Motivated by these successes, a number of deep learn-
ing based saliency models have also been introduced re-
cently [19, 25, 18, 32, 37]. Vig et al. [32] employ an ensem-
ble of deep networks which are based on biologically in-
spired hierarchical features when predicting saliency maps.
Kruthiventi et al. [18] adopt fully convolutional neural net-
works architecture for saliency estimation task. Kümmerer
et al. [19] use deep features learned via different layers of
the AlexNet [17] model and learn how to combine them for
saliency estimation. Zhao et al. [37] perform salient object

detection through a deep learning framework considering
local and global image context. Pan et al. [25] very recently
propose two convolution network based models with dif-
ferent layer sizes by formulating saliency prediction as a
regression task. It is important to note that all these mod-
els are proposed for predicting saliency in still images not
videos.

Motivated by these deep learning based saliency mod-
els, in our paper, we investigate the use of convolutional
neural networks for dynamic saliency estimation. More
specifically, we extract temporal information via optical
flow between consecutive video frames and investigate dif-
ferent ways to use this additional information in saliency
prediction. We model two different two-stream convolu-
tional networks that combine spatial and temporal informa-
tion by employing early and late fusion strategies. Best to
our knowledge, our models are the first two-stream convo-
lutional neural network based dynamic saliency models in
the literature.

3. Models
The purpose of this study is to investigate different deep

architectures for dynamic saliency prediction. Recently,
deep convolutional networks provided drastically superior
performance in many classification and regression tasks in
computer vision. While the lower layers of these networks
respond to primitive image features such as edges, corners
and shared common patterns, the higher layers extract se-
mantic information like object parts or faces. As men-
tioned before, such low and high-level features are shown
to be both important and complementary in estimating vi-
sual saliency. Towards this end, we examine two baseline
single frame networks in Figure 1(a) and 1(b) (spatial and
temporal) and two two-stream networks [31] that combine
spatial and temporal cues at different levels of granularity
by implementing two different fusion strategies: late fusion
and early fusion, as shown in Figure 2(a) and 2(b). We
describe these models in detail below.

Spatial Stream Net. For the basic single-frame baseline
model, we use the recently proposed static saliency model
in [25]. As shown in Figure 1(a), this convolutional net-
work resembles the VGG-M model [4] – the main differ-
ence being that the final layer is a deconvolution (fraction-
ally strided convolution) layer to upsample to the original
image size. Note that it does not use any temporal infor-
mation and exploits only appearance information to predict
saliency in still video frames.

Temporal Stream Net. What makes saliency prediction
in videos inherently different than in images is that our at-
tention is hugely influenced from the local motion contrast
of foreground objects. To understand the contribution of
temporal information to the saliency prediction, by itself,
we develop a second single frame baseline. As shown in



(a) Spatial Stream Net (b) Temporal Stream Net

Figure 1. Single frame networks for dynamic saliency prediction. While one utilizes only spatial (appearance) information and accepts still
video frames, the other one exploits only temporal information whose input is given in the form of optical flow images.

(a) Late Fusion Net (b) Early Fusion Net

Figure 2. The proposed two-stream convolutional network architectures for dynamic saliency prediction. The first one performs late fusion
by using element-wise fusion before the deconvolution layer, whereas the second one employs Conv fusion at an early stage, after the
fourth convolution layers.

Figure 1(b), this model is just a replica of the spatial stream
net but the input is provided in the form of optical flow
images, as in [31], computed from two subsequent frames.
Some sample optical flow images are shown in Figure 3.

Late Fusion Net. The Late Fusion model is illustrated
in Figure 2(a). It takes both a video frame and the corre-
sponding optical flow image as inputs and merges together
the spatial and temporal single-frame networks via element-
wise fusion at the latest convolution layer. In this sense, it
directly combines spatial and temporal information at the
highest level. After this fusion step, it also employs a de-
convolution layer to produce an upsampled saliency map as
the final result.

Early Fusion Net. Early Fusion model integrates spatial
and temporal streams in an early stage, to be specific by
applying Conv fusion after the 4th convolution layer of the
single-frame models Conv fusion. That is the corresponding
feature maps from single-frame model are stacked together
and them combined with a bank of 1 × 1 convolutions. As
illustrated in Figure 2(b), this is followed by a number of
convolutions and a final deconvolution layer to produce the
saliency map.

3.1. Implementation Details

Network Architectures. For the single-frame mod-
els, we employ the deep convolution network proposed
in [25], which takes inputs of size 640 × 480 × 3 pix-
els and can be summarized as C(96, 7, 3) → LRN →
P → C(256, 5, 2) → P , C(512, 3, 1) → C(512, 5, 2)
→ C(512, 5, 2) → C(256, 7, 3) → C(128, 11, 5) →
C(32, 11, 5)→ C(1, 13, 6)→D, where C(d, f, p) denotes
a convolutional layer with d filters of size f × f applied to

the input with padding p and stride 1. LRN symbolizes a
local response normalization layer that performs a kind of
lateral inhibition, and P indicates a max pooling layer over
3 × 3 regions with stride 2. Finally, D is a deconvolution
layer with filters of size 8×8×1 with stride 4 and padding 2
which upscales the final convolution results to the original
size. All convolutional layers except the last one are fol-
lowed by a rectified linear unit non- linearity (ReLU) layer.
The spatial and the temporal stream models differ in their
inputs, that is, while one accepts still images, the other ac-
cepts optical flow images.

The proposed two-stream models employ different fu-
sion strategies to fuse together the spatial and temporal con-
volutional networks at different stages, as illustrated in Fig-
ure 2. In the Late Fusion model, as its name suggests, the
single stream stream networks are combined after the last
convolutional layer C(1, 13, 6) by applying element-wise
max operation, which is followed by the same deconvo-
lution layer D in the single-frame models. On the other
hand, the Early Fusion model performs Conv fusion after
the fourth convolutional layer C(512, 5, 2). That is, the re-
sulting feature maps are stacked together and integrated by
a convolution layer C(512, 1, 0) whose weights are initial-
ized with identity matrices. The remaining layers are the
same with those of the single-frame models.

Preprocessing. In our experiments, we use DIEM (Dy-
namic Images and Eye Movements) dataset [24] which be
described in detail in the Experiments section. Since our
networks accept inputs of size 640×480×3 pixels and out-
puts saliency maps of the same size, all videos and ground
truth fixation density maps are rescaled to this size prior to
training. We use the publicly available implementation of



DeepFlow [34] and we additionally extract optical flow in-
formation from the rescaled versions of subsequent video
frames. Optical flow images are then generated by stacking
horizontal and vertical flow components and the magnitude
of the flow together. Some example optical flow images are
shown in Figure 3.

Data Augmentation. Data augmentation is a widely
used approach to reduce the effect of overfitting and im-
prove generalization of neural networks. For saliency pre-
diction, however, classical techniques such as cropping,
horizontal flipping, or RGB jittering are not very suitable
since they alter the setup used in the eye tracking experi-
ments in collecting the data. The experiments in [14] re-
veal that humans are quite consistent about where they look
on high and low-resolution versions of the same images.
Hence, we process all video sequences and produce their
low-resolution versions by downsampling them by a factor
of 2 and 4. We note that in reducing the resolution of optical
flow images the magnitude should also be rescaled to match
with the downsampling rate.

Training. We use the weights of the pretrained model
in [25] to set the initial weights of the spatial and temporal
stream networks. In optimizing the models, we use Caffe
framework [12] and employed Stochastic Gradient Descent
with Euclidean distance between the predicted saliency map
and the ground truth. The networks were trained over 200K
iterations where we used a batch size of 2 images, momen-
tum of 0.9 and weight decay of 0.0005, which is reduced by
a factor of 0.1 at every 10K iterations.

4. Experimental Results

In the following, we first present experimental evaluation
of the proposed network architectures against the state-of-
the-art dynamic saliency models on DIEM dataset [24]. We
then describe our transfer learning experiments on SALI-
CON [13] dataset where we demonstrate that static saliency
estimation can also benefit from using motion information.

4.1. Experiments on DIEM

We experimentally validate the effectiveness of the
proposed deep dynamic saliency networks on the DIEM
dataset [24]. This dataset consists of 84 high-definition nat-
ural videos including movie trailers, advertisements, etc.
Each video sequence has eye fixation data collected from
approximately 50 different human subjects. In our evalua-
tion, we evaluate all of our proposed deep dynamic saliency
networks (Spatial Stream Net, Temporal Stream Net, Late
Fusion Net, Early Fusion Net) by considering the same ex-
perimental setup reported by Borji et al. in [3]. Specifi-
cally, we train each one of these networks with 64 video
sequences,and test them on the remaining 20 representative
videos.

In Figure 4, we provide sample qualitative results of the
proposed networks on one of sample video frames along
with the ground truth human fixation map. The results
clearly demonstrate the importance of the motion in dy-
namic saliency estimation. The Spatial Stream Net, which
does employ appearance information but not motion, pro-
vides an inaccurate saliency map and misses the foreground
object in motion. The Temporal Stream Net gives better
results, but does identify all the moving regions as salient.
Late Fusion Net results in a more accurate result as it inte-
grates the appearance features with the motion features in
its final prediction layer. Early Fusion Net gives the best
results as it combines spatial and temporal information in
early layers, which allows to learn filters which work on
combined appearance and motion information in higher lay-
ers. Sample results are also provided in the supplementary
material.

We quantitatively evaluate the proposed network mod-
els by using the shuffled AUC metric [27] and the χ2

distance. The Area-under-curve (AUC) metric treats the
saliency maps as a classification map and employs the re-
ceiver operator characteristics curve to estimate the effec-
tiveness of the predicted saliency maps in capturing the
ground truth eye fixations. In particular, we employ the
shuffled version of AUC (sAUC) which accounts for the
center bias observed in the saliency datasets. The χ2 dis-
tance, on the other hand, considers the saliency maps as
a probability distribution map and compares the predicted
map with the ground truth human fixation map accordingly.
A perfect prediction model needs to give a score of 1 for
the sAUC metric and needs to provide a distance close to
0 for the χ2 distance. For each test sequence we compute
the sAUC scores and the χ2 distances at every frame and
average them out. Table 1 presents the quantitative results
of the proposed dynamic saliency networks. As can be seen
from the table, Spatial Stream network provides the worst
results in terms of both metrics. Early Fusion network in
general gives better results than all the other network archi-
tectures. It can be argued that the reason behind this success
lies in an early integration of the appearance and the motion
features in earl layers, which allows the filters in the higher
levels of the hierarchy to learn more effective features for
the saliency prediction task. When we employ the data aug-
mentation strategy that we discussed in the previous section,
it further boosts the scores.

We additionally compare our Early Fusion Net model
with four different methods from the literature. These are
GVBS [8], PQFT [7], Hou and Zhang’s [10] and Rudoy
et al.’s [29] dynamic saliency models, which are the best
performing models on the DIEM dataset. While Fig-
ure 5 presents the qualitative results on some sample video
frames, Table 2 provides the quantitative evaluation results.
As can be seen from these results, the proposed two-stream



Figure 3. Sample optical flow images generated for some frames of a video sequence from DIEM dataset.

Input Image Spatial Stream Net Temporal Stream Net

Ground Truth Late Fusion Net Early Fusion Net
Figure 4. Comparison of the proposed network architectures. For this frame the Early Fusion Net provides the most accurate prediction as
compared to the other network models.

convolutional network model with early fusion strategy out-
performs all the existing models in terms of sAUC score and
χ2 metric.

4.2. Transfer Learning Experiments on SALICON

A still image is captured in an instant, but that single im-
age frame has enough information which allows to predict
the inherent motion of the scene imaged. Motivated with
this observation Walker et al. [33] have proposed a deep op-
tical flow prediction model which works for static images.
For this last set of experiments, we employ this prediction
model to estimate the related motion map of an input image,
and use it together with the original image as inputs to our
two-stream Early Fusion network model. In Figure 6, we
present a sample image containing a man in front of a house.
It is a still image, yet we can understand the scene clearly
that the man is throwing a frisbee. As illustrated, the optical
flow model correctly extracts the frisbee as the moving ob-
ject in the scene. This allows our dynamic saliency network
to better understand the image and provide a more accurate
saliency map as opposed the Deep Conv model which does
only use the appearance information.

We perform out experiments on the recently proposed
SALICON dataset [13]. This large-scale dataset contains
20000 natural images, all of which are taken from the MS-
COCO dataset [20] and enriched with the fixation data col-
lected via mouse cursor tracking. For evaluation, the dataset

is split into 10000 training, 5000 validation and 5000 test-
ing images. The fixation data is available only for the train-
ing and validation splits, and the tests are carried out ex-
ternally by an evaluation server. For the experiments, we
finetune our Early Fusion model on the training images and
the optical flow images extracted from these static images
using [33]. In Figure 7, we present some sample saliency
maps generated by our Early Fusion network. We also
present some quantitative results in Table 3 where we com-
pare our results with some state-of-the-art static saliency
models. For this evaluation, we use AUC, sAUC and Cross
Correlation (CC) metrics. As shown in the table, our pro-
posed Early Fusion network model provides the best sAUC
score among the existing models, and gives highly compet-
itive results for the remaining metrics as compared to Deep
Conv network [25]. Although motion might not be the pri-
mary factor for all the images in the SALICON dataset, our
results demonstrate that motion information predicted from
still images could be useful.

5. Conclusion

We have presented two novel architectures for saliency
prediction in videos. Our models are based on two-stream
convolutional networks, which are trained in an end-to-end
fashion on a large and diverse dataset, and they provide ef-
fective ways of combining spatial and temporal informa-
tion. We also propose a well-founded and effective data



Ground Truth Early Fusion Net GBVS [8] PQFT [7] Hou & Zhang [10]
Figure 5. Qualitative comparison of the Early Fusion Net against other dynamic saliency models. Our model clearly produces better results.

Spatial
Stream

Temporal
Stream

Late
Fusion

Early
Fusion

Early Fusion
w/ Augmentation

sAUC 0.69 0.77 0.81 0.83 0.84
χ2 0.48 0.40 0.31 0.29 0.28

Table 1. Comparison of the proposed deep dynamic saliency networks on the DIEM dataset.

Early Fusion
w/ Aug.

Rudoy GBVS PQFT Hou and
Zhang

sAUC 0.84 0.74 0.70 0.67 0.64
χ2 0.28 0.31 0.47 0.52 0.57

Table 2. Comparison against the state-of-the art models on the DIEM dataset. The proposed Early Fusion network outperforms all the
existing models in terms of all metrics.

Input Image Optical Flow Map Deep Conv [25] Early Fusion Net Ground Truth
Figure 6. Transfer learning for static saliency estimation. Utilizing optical flow information estimated from static images can improve the
prediction quality. Our finetuned Early Fusion Net produces a better saliency map than Deep Conv [25], a static deep saliency model.

Figure 7. Sample static saliency results on some images from SALICON test set. Top row: Input images, Bottom row: Predicted saliency
maps.



AUC sAUC CC
Early Fusion 0.84 0.73 0.59
Deep Conv [25] 0.85 0.72 0.62
Shallow Conv [25] 0.83 0.66 0.59
Rare 2012 Improved [28] 0.81 0.66 0.51
Xindian 0.80 0.68 0.48
GBVS [8] 0.78 0.63 0.42
Itti [11] 0.66 0.61 0.20

Table 3. Quantitative comparison of our early fusion network against the state-of-the art models on the SALICON dataset. Although the
proposed network is designed for dynamic saliency prediction, it outperforms all the existing models in terms of sAUC and gives very
competitive results for the remaining metrics.

augmentation method which employs low-resolution ver-
sions of the video frames and the ground truth saliency
maps. We demonstrate that our models quantitatively out-
perform the state-of-the-art on DIEM dataset. In addition,
we show that static saliency prediction can also benefit from
motion information where we finetune our model on SAL-
ICON dataset by exploiting automatically predicted optical
flows from static images.
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