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Figure 1: A sample panorama displaying procedurally generated humans by the NOVA framework in a controllable, configurable environ-
ment along with their annotations. The first half is photorealistic renderings transitioning between different times of day and the latter half
is demonstrating some of the pixel-level annotations NOVA generates for use in various computer vision tasks: (from left to right) instance
segmentation, semantic segmentation, optical flow, surface normals and the depth data.

Abstract
Today, the cutting edge of computer vision research greatly depends on the availability of large datasets, which are critical for
effectively training and testing new methods. Manually annotating visual data, however, is not only a labor-intensive process
but also prone to errors. In this study, we present NOVA, a versatile framework to create realistic-looking 3D rendered worlds
containing procedurally generated humans with rich pixel-level ground truth annotations. NOVA can simulate various environ-
mental factors such as weather conditions or different times of day, and bring an exceptionally diverse set of humans to life,
each having a distinct body shape, gender and age. To demonstrate NOVA’s capabilities, we generate two synthetic datasets
for person tracking. The first one includes 108 sequences, each with different levels of difficulty like tracking in crowded scenes
or at nighttime and aims for testing the limits of current state-of-the-art trackers. A second dataset of 97 sequences with nor-
mal weather conditions is used to show how our synthetic sequences can be utilized to train and boost the performance of
deep-learning based trackers. Our results indicate that the synthetic data generated by NOVA represents a good proxy of the
real-world and can be exploited for computer vision tasks.
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1. Introduction

The rapid progress in the field of computer vision and other AI
related disciplines has been significantly driven by learning based
methods, most notably those based on deep learning. Getting the
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best out of these approaches, however, broadly depends on the
availability of large training data, and hence a major bottleneck on
the way towards solving many computer vision tasks is the lack of
diverse, accurate and large scale datasets. Manually curating such
large datasets is labor-intensive and often error-prone. Although
Amazon’s Mechanical Turk or similar services can alleviate those
issues, these tools are very expensive, especially for small research
groups, if one wishes to capture the real-world in its full glory. But
maybe more importantly, such crowdsourcing platforms become
impractical for collecting ground truth data for some computer vi-
sion tasks (e.g. optical flow estimation). A neat idea to overcome
these difficulties is to utilize synthetic data for machine learning,
which has gained momentum over the past few years.

Recent improvements in game technologies have made the cre-
ation of photorealistic and physically accurate games possible.
Since designing virtual worlds from scratch can be very expen-
sive and requires highly skilled artists, it is possible to make use of
the games that are already available. Making modifications on an
open-sourced game or capturing the information sent by the game
to graphics card can help to generate large synthetic datasets. How-
ever, the fact that commercial games do not represent a proxy of
many real-world scenarios poses an essential problem with this ap-
proach, limiting its benefits.

Another way to create large synthetic datasets is to design the
virtual world based on the needs. While it usually requires more
effort to create and configure, this approach makes it possible to
produce a high-fidelity proxy of the targeted scenarios. With the
advances in graphics engine capabilities within the past decade, the
photorealistic and physically-based simulations realized by using
these engines allowed to minimize the gap between real and virtual
world data.

Procedural generation has been proposed as a solution for creat-
ing realistic looking environments in relatively short amounts of
time, making it easier and cheaper for users to generate virtual
worlds from scratch. In its simplest form, a procedural generation
framework follows some systematic recipes and generates scenes,
populations and actions, based on the given set of instructions. Our
work contributes to this line of research, in which we pay special
attention to the human generation aspect - in addition to offering
a comprehensive variety of automatic ground truth annotation fea-
tures that are partially available in other synthetic data generation
frameworks.

The large-scale benchmark datasets that were collected in the
past few years [DDS*09; LMB*14; KH09; GZW*] has lead to the
unprecedented progress in deep learning based computer vision ap-
proaches. Although the exponential increase in the amount of digi-
tal data today can make data collection easier than before, manual
labeling of large volumes of examples with high quality and accu-
rate labels still requires too much effort and comes with a tremen-
dous cost. Our proposed NOVA framework, with its procedural and
automated generation capabilities, provides a solution to this daunt-
ing data collection/annotation challenge by letting the users create
and render 3D virtual worlds containing human agents with dif-
ferent characteristics in real-time. The authors in [DGCP17] pre-
viously proposed a similar framework but their focus is mainly
on human action recognition and thus their framework has limited

functionalities. On the other hand, in our proposed NOVA frame-
work, the users have full control of the scenes, scene elements and
humans, along with the illumination and weather conditions, allow-
ing to study various factors affecting the success of their algorithms
during development time and opening up a possibility being used
in a wider range of computer vision tasks.

The main contributions of this work can be summarized as fol-
lows:

• We present a novel procedural content generation engine called
NOVA. It is capable of generating large-scale and photo-realistic
videos of human agents performing various actions on many dif-
ferent scenes along with the annotations for various computer
vision tasks.
• Using our NOVA rendering engine, we generate two synthetic

datasets specifically designed for person tracking. While we use
the first dataset to assess the performance of existing visual
trackers on various conditions, we employ the second one to
train deep visual trackers to boost their performances on real se-
quences.
• Our experiments demonstrate that the existing trackers perform

poorly in highly crowded scenes, or in scenes captured at night
and in foggy weather conditions. Moreover, our generated syn-
thetic sequences present a good proxy of the real sequences in
that when used as training data, it improves the performances of
deep visual trackers.

2. Related Work

Creating realistic scenery, humans, actions and materials that
mimic their actual world counterparts has been a major aim since
the early days of video games. However, such a goal was not possi-
ble until recently. The ability to create photorealistic and physically
accurate games motivated many researchers to investigate the pos-
sibility of utilizing them for the task of synthetic data generation.
The works in this scope fall under either of the two main method-
ologies. The first is to adapt a specific game for the task of generat-
ing the synthetic dataset as in the works by Richter et al. [RVRK16;
RHK17] where Grand Theft Auto V game was adapted to generate
synthetic datasets. Essentially, they exploited the communication
between the game and graphics hardware via injection of a mid-
dleware between the two to pull the necessary information for the
desired annotations. Another work [TCB07] modified Half-Life 2
game to evaluate a surveillance camera system. Using their pro-
posed Object Video Virtual Video (OVVV) framework, they were
able to generate bounding boxes and accurate segmentation labels
for arbitrary number of frames automatically. In addition to that,
they discussed how it is possible to integrate some noise and de-
formation techniques to produce more natural and realistic scenes.
Similarly, [SLS16] deployed a photorealistic video game to gener-
ate a large set of synthetic images, which were used to train a con-
volutional neural network for depth estimation and image segmen-
tation. They concluded with many experiments that pre-training on
synthetic data or training on both synthetic and real data achieve
similar or better results compared to using only organic data for
the training process. Nevertheless, using existing video games has
the significant disadvantage of lacking diversity, as it does limit the

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John Wiley & Sons Ltd.



Abdulrahman Kerim, Cem Aslan, Ufuk Celikcan, Erkut Erdem & Aykut Erdem / NOVA: Rendering Virtual Worlds with Humans

number of scenarios, environments, actions, objects, and humans
that can be included in a synthetic dataset.

The second methodology adopts using a graphics engine for data
generation rather than individual video games. [QY16] used this
concept by providing a plugin for Unreal Engine to generate ground
truth for certain computer vision tasks by making some modifica-
tions on the internal data structures of a game and controlling a vir-
tual camera to explore the scenes. Similarly, [HUI13] used an open
source driving simulator framework, VDrift, to generate a synthetic
dataset, which incorporates high resolution images with their cor-
responding ground truth labels for semantic segmentation, depth
and optical maps, specifically for multiclass image segmentation.
A conditional random field model was trained with the synthetic
data and used to analyze how various combinations of features af-
fect the segmentation performance.

As an alternative, it is possible to refer to the open source anima-
tion movies to modify the rendering process to generate certain an-
notations along with the movie frames. One work [BWSB12] used
this method for generating a synthetic optical flow dataset. They
showed that optical flow statistics of their synthetic sequences and
real video sequences are in agreement. Moreover, the dataset pro-
vided was larger than Middlebury [BSL*11] and KITTI [GLU12]
which allowed further studies on optical flow research. However,
the inability to modify the scene structure of the animation consti-
tutes the main drawback with this approach, making it even more
limited for the purpose of synthetic data generation than using
available photorealistic games.

Perhaps the most unrestricted way of creating arbitrarily large
datasets together with their automated ground truth labels is tak-
ing the approach of using a graphics engine further by making
use of procedural generation techniques in virtual world creation.
De Souza et al. [DGCP17] investigated the possibility of adapt-
ing this concept with ragdoll physics, random perturbations and
muscle weakening to generate a wide range of human actions sys-
tematically with their corresponding labels. They have defined 17
actions and showed that integrating the real-world data with their
generated synthetic data can enhance the recognition performance.
Another work [CWB*16] applied the concept of procedural gen-
eration to generate labeled crowd videos. As a proof of concept,
it was shown that integrating their generated synthetic data with
real-world data can improve the crowd behavior classifier’s accu-
racy and the overall performance of pedestrian detection notice-
ably. Wrenninge et al. [WU18] demonstrated a photorealistic and
diverse synthetic dataset that can be generated entirely procedu-
rally. The ability to parameterize the scene generation process and
the fact that these parameters are not correlated are the main contri-
butions of this work. They showed that training on their synthetic
dataset and fine-tuning on organic dataset gives better performance
compared to training only on the latter one only.

Due to the advancements in real-time rendering, the number of
synthetic datasets that can be used for a wide spectrum of com-
puter vision tasks has seen a considerable boost in the recent years.
PHAV (Procedural Human Action Videos) [DGCP17] dataset is an
example of a large scale synthetic dataset that was generated pro-
cedurally. It is mainly proposed for action recognition, and con-
tains around 6 million frames in total. Another example, LCrowdV

(Labeled Crowd Video) [CWB*16] dataset, which was produced
by applying procedural modeling and rendering techniques, can be
used for tasks such as pedestrian count, flow estimation and ob-
ject detection and has more than 20 millions frames. On the other
hand, there is VKITTI (Virtual KITTI) [GWCV16] dataset of ap-
proximately 21 thousand frames which can be used for multi-object
tracking, scene level and instance level semantic segmentation and
depth estimation in addition to object detection and optical flow es-
timation. SYNTHIA (Synthetic Collection of Imagery and Anno-
tations) dataset [RSM*16], with more than 200 thousand images,
is purposed for semantic segmentation and scene understanding of
outdoor scenes for autonomous driving tasks. However, being spe-
cially designed for driving scenarios makes it inapplicable for many
other computer vision tasks. Another similar and recent dataset is
ParallelEye [LWT*18] which was generated by taking images from
a synthetic car moving in a virtual city and contains around 40 thou-
sand frames. It can be used for several tasks such as object detec-
tion, semantic and instance segmentation, and optical flow.

As discussed above, using computed generated imagery has be-
come an important research direction especially for data-hungry
deep learning approaches. That being said, the existing frameworks
have some drawbacks. For instance, the main limitation of the
frameworks proposed in [RVRK16; RHK17; BWSB12] is that they
do not allow to configure the virtual environments as they use exist-
ing computer games or computer generated movies while generat-
ing annotations for synthetic data. NOVA framework, on the other
hand, lets the user to play with the environment along with the en-
vironment conditions such as weather, time of day, crowdedness
and camera types. Moreover, including new features like new envi-
ronments, new objects, or new character animations can be easily
done due to its flexible design that supports procedural generation
as opposed to the tools such as UnrealCV [QY16] which is just
a plug-in for the Unreal game engine or the frameworks such as
VDrift [HUI13] that only supports driving based scenarios.

Another advantage of NOVA lies in the annotations it supports.
As compared to the frameworks suggested in [TCB07; SLS16],
NOVA allows to extract a richer set of annotations for a user gener-
ated scene. These include accurate annotations for some low-level
vision tasks such as scene depth, optical flow and surface maps,
and annotations for some high-level tasks such as object detection,
visual tracking, semantic segmentation and instance segmentation.
Besides, from the human agents perspective, our main focus is not
the human action recognition as in [DGCP17] or crowd behavior
learning and counting in [CWB*16]. With the capability of pro-
cedurally generating a large and diverse set of synthetic humans
and their character animations, it suggests a more generic solution
which opens many possible applications.

With the proposed NOVA framework, our main aim is to fur-
ther advance the efforts in computer vision by facilitating the au-
tomated creation of new arbitrarily large synthetic datasets with an
extensive variety of ground truth annotations. NOVA lets users eas-
ily create photorealistic 3D virtual worlds containing procedurally
generated humans, and allows to obtain frame and pixel-level an-
notations about a scene and its elements in real-time, making it
a versatile framework for automatic data collection and labeling
pipeline for a wide range of tasks including but not limited to vi-
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sual tracking, crowd counting, semantic segmentation, optical flow
estimation, and depth estimation. It can simulate several illumi-
nation and weather conditions such as fog, rain, snow, daytime,
nighttime, which help to test both favorable and adverse settings
for these tasks. Furthermore, procedural generation capabilities of
NOVA allows to generate unique synthetic humans with very di-
verse characteristics regarding body shape, gender, age and cloth-
ing, making NOVA a perfect tool for generating realistic-looking
synthetic data for problems involving persons.

3. NOVA: Framework of Rendering Virtual Worlds with
People for Computer Vision Tasks

Our framework NOVA is built on the widely used Unity graph-
ics engine. The framework, when all annotations are enabled (ex-
cept bounding boxes, which are computed offline) and the num-
ber of synthetic humans to be generated is set to vary between
5 and 15, runs at real-time speeds (rendering between 42 and 60
frames per second on average) using current generation hardware
(Intel Core i7-7700HQ, GeForce GTX 1070, with SSD and 32GB
RAM). Readers are referred to visit the project website https:
//graphics.cs.hacettepe.edu.tr/NOVA for an online
demo of the framework that allows to observe all procedural gener-
ation and visual ground-truth annotation features of NOVA at real-
time by adjusting various scene-level attributes.

NOVA consists of the following data generation and annotation
features to facilitate the creation of arbitrarily large datasets for a
diverse array of computer vision tasks from pedestrian detection to
scene understanding.

3.1. Humans

NOVA populates an environment with synthetic humans on a ran-
dom selection of predefined spawning points that are within the
view volume of the generated camera. A sparsity parameter is used
to control the distribution of the spawning points, which determines
the level of human crowdedness in the view.

The synthetic humans are procedurally generated at run-time by
making use of several content creation layers which consist of a
predefined set of categorizable, annotatable features as well as pro-
cedural, low-level randomizations to these features. The low-level
randomizations further enhance the variations realized by the hand-
tailored annotatable features in order to substantiate uniqueness in
generated humans in arbitrarily large sets (Fig. 2). This population
process is built upon the publicly available UMA system [Sys].

To procedurally generate a synthetic human, a unique body and
face shape are first created from either male or female base meshes.
The attribute set to morph the body mesh is calculated from a
base set of pre-determined body attributes. For each gender, there
are three sets of height types (short, average, tall), three sets of
weight types (thin, athletic, overweight), and two sets of age types
(child, adult) available. One from every attribute type is randomly
selected and the values are blended together considering their ef-
fects on different morph points. For instance, a tall child, while
being taller than the average of the children generated, would still
be shorter than an average adult. Once a distinguishable and an-
notatable body type (e.g., ‘short athletic adult male’) is realized

Table 1: Statistics about unique item variations in the procedural
generation of synthetic humans. Possible variations in color are ad-
ditionally provided inside parentheses.

Facial Items

Item Male Female
Hair 4 (48) 3 (32)
Eyebrows 2( 24) 2 (24)
Beard 8 (96) - / -

Clothing and Accessory Items

Item Male Female
Upper-Body Clothing 7 (28) 7 (28)
Lower-Body Clothing 6 (240) 13 (520)
Outerwear 2 (80) 3 (120)
Shoes 5 (40) 10 (80)
Bags 3 (12) 3 (12)
Other 2 (4) 3 (18)

from the blended attribute set, it is further randomized by apply-
ing a rather small white noise with uniform distribution to each
morph point on the body in order to ensure uniqueness while still
resembling the tagged body type. This process theoretically allows
to create infinitely many unique bodies which can be categorized
into 36 major body types.

Then, a set of clothes and facial attributes are generated for the
synthetic human from a set of recipes, which create a content in-
stance by mixing and recoloring several recipe items in unique
ways (Table 1). For example, a recipe for creating a beard texture
contains three options for beard masks which are randomly selected
in varying numbers, blended together (if more than one mask is se-
lected) and used for applying a beard matched to the human’s hair
color, potentially generating eight different beard shapes. On the
other hand, a recipe for choosing a shoe is relatively simple and
selects one of the shoe meshes provided for the corresponding gen-
der.

A shared color system is used for applying colors, such that, each
recipe chooses a color from a set of different palettes for skin, hair
and clothing types. These colors are then multiplied with one of the
alternative mask textures in order to yield variety in hair and skin
textures and clothing patterns. The resulting colored and patterned
textures are then used as the diffuse channel of the material while
others (specular channel, gloss channel, etc.) are kept unchanged
in order to retain correct physically-based material properties. This
recoloring scheme allows us to further diversify the created humans
while still keeping an easily categorizable generation system.

The resulting meshes from the recipe-based generation process
are skinned onto the skeleton with the body mesh and the additional
texture masks which are used to cull the body parts that will be cov-
ered by these meshes are added onto the base mesh textures during
sampling. Fig. 2 shows an arbitrarily chosen subset of a sample of
9112 unique humans generated by NOVA. Although the instances
in the figure are arranged with respect to perceptual similarity, it
can be seen that even the humans in the small subset are still easily
distinguishable from one another.

The animations for the humans are procedurally generated by
blending between several motion captured animation sets includ-
ing standing idle, walking, running and arguing. In order to create a
unique motion instance at each time, two of these sets are randomly
chosen and blended together. The blending is handled using linear
interpolation, such that a blended animation is an average of the
separate animations weighted randomly by uniformly distributed
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Figure 2: A sample of 21 synthetic humans (in focus) from a set containing 9112 unique humans generated by NOVA.

blending parameters. As the humans are created using a common
rig structure that adapts automatically, each can be assigned a ran-
domly blended animation with seamless instant mapping.

The employed motion sets are limited to the ones that are most
commonly encountered within the compatible real-world datasets.
Additional sets of motions can be easily incorporated into the
framework to advance variety. It should be noted that the duration
of the generated video sequences is not limited by the duration of
the motion clips and NOVA can generate video sequences of arbi-
trary duration by looping the blended animations as needed.

The blended animations involving locomotion are kept consis-
tent with the environment geometry by using Unity’s navigation
mesh system which facilitates path planning and obstacle avoid-
ance along a path. The destination of a path is assigned randomly by
NOVA and if the destination is reached before the sequence ends, a
new one is assigned.

3.2. Environments

Currently, NOVA can create sequences in three outdoor environ-
ments (a town square, a suburban street and a metropolitan ur-
ban district) and one indoor environment (a subway station) (Fig.
3a). Each environment is equipped with at least 20 different spawn
points, which are selected at random during population process.
Lighting in the 3D environments is parametrically generated to sim-
ulate different hours of a day (Fig. 3b) and weather types based on
sun direction and altitude (Fig. 3c). The skybox, which provides
ambient lighting for the 3D environments, and the weather effects
are procedurally generated using the Enviro system [Wor].

Moreover, NOVA also makes use of HDR cubemaps that are cap-
tured from real-life (Fig. 3d). In this case, the synthetic human re-
ceives directional lighting from the virtual sun and ambient light-
ing from the cubemap by using the image-based lighting method
[Deb02]. In order to blend the generated human with the environ-
ment further, the shadow that would be cast by the human on the

ground is simulated by using a transparent plane, which receives
shadow from the human’s mesh. Although the background seems
more realistic compared to the 3D environments, the drawback to
using cubemaps is that illumination and weather changes can not
be applied to them procedurally without ending up looking non-
realistic in general.

3.3. Cameras

NOVA simulates different camera types as follows.

Surveillance Cameras: include both static and PTZ type surveil-
lance cameras. The PTZ camera performs panning, tilting and
zooming to keep the human being tracked in its field-of-view.

Non-Surveillance Cameras: include UAV and ground-level camera
types. The first one simulates a camera attached to a UAV while
the second one imitates a pedestrian carrying a camera and record-
ing others. For each type, there is a predefined set of camera paths,
which has a separate camera assigned per path, in each environ-
ment. The non-surveillance camera operation is outlined in Algo-
rithm 1. To avoid having the tracked human always right in the
middle of the view, the camera follows a virtual object rotating in
an orbit around the human’s hip instead of tracking the human di-
rectly.

3.4. Ground Truth Annotations

NOVA automatically generates ground-truth annotations on-the-fly
as the simulated scene is procedurally created and photorealisti-
cally rendered for each frame. All annotations, except the textual
metadata, are at the pixel-level.

For each screen-space annotation, a separate camera is created
and each camera uses different shaders, shader-specific parameters
and culling parameters in order to create that annotation’s frame.
An effects shader containing sub-shaders for the annotations is set
to each of these cameras as replacement shader which then uses the
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(a) Sample images of the 3D environments. First row: a subway station.
Second row from left: a metropolitan urban district, a town square, and a
suburban street.

(b) Different times of day.

(c) Various weather conditions.

(d) Samples using HDR cubemaps [Zaa] captured from real-world

Figure 3: Illustrating the diversity in NOVA’s computer-rendered
synthetic environments.

sub-shader with the matching render type of the specified annota-
tion. That is, the camera renders the scene as it normally would, i.e.,
the objects still use their own materials, but the actual shader that
ends up being used for annotation is changed, overriding shaders
for regular rendering, and, instead, outputting the annotation.

Optical Flow. For the optical flow pass, the pixel motions are en-
coded in screen UV space to a screen-sized RG16 (16-bit float per
channel) texture. Color encoding is done according to per-pixel mo-
tion vectors with respect to the camera. This information comes
from an extra render pass into which moving objects are rendered
and their motion is constructed with respect to inter-frame differ-
ences. Different optical flow annotation schemes can be applied by
changing mappings for the encoding in order to make it compatible
with existing datasets. Fig. 4b exemplifies two such alternative en-
coding schemes. Optical flow sensitivity can be adjusted as desired
so that the amount of movement that is to be observed is encoded
in a normalized manner.

Surface Normals. During the surface normals pass, surfaces are
color encoded according to their orientation with respect to the

Algorithm 1: Algorithm for Non-Surveillance Camera Op-
eration

Activate Camera Paths for the Specified Camera Type;
Set Camera Parameters;
IDtracked ← ID of the Synthetic Human Being Tracked;
IDtracked .Collider.Radius← Higher Collider Radius Value

than Others;
foreach CameraPathCollider ∈ Active Camera Path

Colliders do
if CameraPathCollider is triggered by

IDtracked .Collider then
Set the Camera Attached to CameraPathCollider as

the Active Camera;
IDtracked .Collider.Radius← Regular Collider

Radius Value;
Set the Active Camera to Follow and Look at the

Object Rotating about IDtracked .Joints.Hip;

while IDtracked is occluded do
Wait;

Start Recording;

camera (Fig. 4c). Encoding is done using stereographic projection
into a 16 bit value which is packed into two 8 bit channels of a
screen-sized texture. This information comes directly from the G-
buffer.

Depth Map. For the depth map creation, pixels are gray-level in-
dexed based on per-pixel distance to the camera (Fig. 4d). The in-
formation for depth map textures comes directly from the actual
depth buffer which is also a product of the G-buffer rendering.

Instance Segmentation. For every frame, each distinct entity
within the camera view is assigned a unique identifier color rep-
resenting its object ID (Fig. 4e). The view is then rendered by out-
putting the respective color without additional shading to obtain the
instance segmentation pass.

Semantic Segmentation. Entities within the camera view are also
assigned colors based on layers representing their category, e.g.,
human, vehicle, road (Fig. 4f). The assigned colors are then ren-
dered without additional shading to obtain the semantic segmen-
tation pass. The variety of categories can be expanded as desired
by defining additional layers. The layers should be assigned to the
respective objects or their prefabs during the content creation pro-
cess.

While creating instance segmentation and semantic segmenta-
tion frames, unique object identifiers and layers are encoded into
RGB color values, set into a block of material values and passed
into the replacement shaders [Uni] to be used. This process is re-
peated every time a change occurs in the scene, e.g. when a new
human is generated.

NOVA can also provide the class and instance -level segmenta-
tion maps for which only a set of chosen objects are culled, e.g., to
generate ground truth data for person tracking, everything except
the synthetic humans in the frame are culled. These masked ver-
sions work in the same fashion as their non-masked counterparts
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(a) RGB image (b) Optical flow

(c) Surface normals (d) Depth

(e) Instance segmentation (f) Semantic segmentation

Figure 4: Sample of scene level annotations automatically gener-
ated by NOVA.

but are rendered using a separate camera instance that only uses
that set’s layer for culling.

Bounding Box. For the bounding boxes, NOVA provides a seg-
mentation that masks each human in view with a different color.
This segmentation is used for min-max calculations to compute the
per-frame bounding box for each human. Since this process takes
considerably more time than the other annotations NOVA gener-
ates, especially for crowded simulations, the second step is carried
out offline once all the other data is generated at real-time.

Body Part Segmentation. Body part segmentation of a synthetic
human (Fig. 5c) is generated by assigning separate vertex colors to
each vertex for torso, head, arms and legs. For this, NOVA checks

the bone weights of every vertex of a human mesh when it is first
generated. Each vertex is assigned to one of the six colors for the
respective body part depending on the weights of the bones that
the vertex is connected to. The colors are then linearly interpolated
during the fragment stage to achieve the final result. This process
allows scalability as it can be carried only once when a synthetic
human is first generated, allowing to keep using GPU for skinning
with a higher frame rate during rendering.

Body Pose. To create the body pose information of a synthetic hu-
man in a frame, the positions of the skeletal joints are transferred
into the screen-space and output as values normalized with respect
to image size. In addition to the screen-space positions of the joints,
NOVA also outputs a depth value per joint which can be used to re-
solve conflicts such as overlapping or occlusion. The output is in
textual metadata form to allow flexibility in visualization. For in-
stance, the body pose visualization in Fig. 5d is compatible with
the keypoint detection format of COCO dataset [LMB*14].

Other Textual Annotations. Some other attributes (see Fig. 5e)
of a generated human that are not suitable to be output as im-
age modalities are output as textual metadata. Most of these at-
tributes were chosen to reflect the ones which are present in existing
datasets of real images purposed for person re-identification. Fur-
thermore, a set of frame level annotations most of which identify
miscellaneous environment parameters that were used to generate
the frame are also included in the textual annotations of that frame.
The frame level annotations include the environment type, weather
and time of day markers, and applied post-fx presets (if any).

4. Experimental Analysis

In this section, using visual tracking as a test bed, we demon-
strate how the proposed framework can be used to create realistic-
looking and diverse synthetic datasets with auto-generated ground
truth annotations. In our analysis, we specifically carry out two dif-
ferent sets of experiments. First, we demonstrate how our frame-
work can be used to generate synthetic sequences with various chal-
lenging scenarios to evaluate the limits of state-of-the-art trackers
(Sec. 4.3). Second, we show how our synthetically generated se-
quences can be utilized for training to boost the performance of

(a) RGB image (b) Bounding box (c) Body part segmentation (d) Body pose

 

 

 

 

 

 

 

     Character Level Textual Annotations : 
        3489_labels.json 

  “gender”: “male”,  

  “bodyType”: “average_athletic_adult_male”,  

  “sleeveLength”: “long_sleeve”,  

  “lowerBodyClothingType”: “pants”,  

  “upperBodyClothingColor”: “red”,  

  “hasOverClothing”: “no”,  

  “overClothingColor”: “null”,  

  “lowerBodyClothingColor”: “dark_blue”,  

  “shoeColor”: “black”, 

  “hairColor”: “blonde”, 

  “hairType”: “medium”,  

  “beardType”: “goatee”,  

  “hasBagInHand”: “no”,  

  “handBagColor”: “null”, 

 

     Frame Level Textual Annotations : 
        3489_1_2_0_0_2_0.png 

 “character_id”: “3489”, 

 “environment”:“suburban”, 

 “position_index”: “2”, 

 “weather_index”: “0”, 

 “hour_index”: “1”, 

 “angle_index”: “2”,  

 “postfx_preset_id”: “0”, 

 

(e) Textual annotations

Figure 5: Sample of human-level annotations automatically generated for a synthetic human.
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Figure 6: Real vs. synthetic sequences. In terms of appearance, the
sequences in (a) NUS-PRO, (b) TC128, (c) UAV123, (d) OTB100,
(e) VOT, and (f) MOT datasets (first three frames in each row) are
compatible with the synthetic ones produced by (g) NOVA (last two
frames in each row).

deep-learning based visual trackers (Sec. 4.4). Before the analysis,
we first briefly review the existing datasets proposed for tracking
(Sec. 4.1) and present the evaluation measures used in our experi-
ments (Sec. 4.2).

4.1. Existing Tracking Datasets

Tracking humans in videos is one of the most important topics
in computer vision, with applications ranging from video surveil-
lance to activity analysis. However, the widely-used benchmark
datasets such as OTB100 [WLY15], VOT [KML*16; KML*19]
and TC128 [LBL15], which are indeed proposed for evaluat-
ing generic object trackers, have relatively small number of
instances containing humans as objects of interest. Some datasets
provide tracking sequences under very specific conditions, e.g.
UAV123 [MSG16] that presents sequences for low altitude UAV
cameras and NUS-PRO [LLW*16] that contains videos that are
mostly recorded by moving cameras. There exists some datasets
that are specifically built for evaluating human trackers, such as
DUKEMTMC [RSZ*16], CamNeT [ZSFR15], MOT [MLR*16]
and NLPR-MCT [CCC*15], but these are mainly limited in both
size and variability since obtaining annotated data for this task is
difficult and time consuming. Either the sequences are captured
with fixed cameras so the backgrounds are in general static or
the lightning conditions do not vary much. To alleviate such
shortcomings, in our experiments, we specifically focus on the
task of tracking humans and use NOVA to generate two different
datasets containing sequences with different levels of difficulty.
Fig. 6 shows some sample sequences from our synthetic datasets,
together with real-world sequences from NUS-PRO [LLW*16],
TC128 [LBL15], UAV123 [MSG16], OTB100 [WLY15],
VOT [KML*16; KML*19], and MOT [MLR*16] datasets. It is
seen that NOVA is able to generate sequences that are compatible
with the real-world sequences. We provide a more detailed
comparison between our synthetic sequences and the curated real
sequences used in the experiments in the supplementary material.

4.2. Evaluation Measures

In our experiments, we consider precision and expected average
overlap (EAO), two commonly used metrics in evaluating visual
trackers. Precision calculates the distance between the center of
tracker bounding box and ground truth bounding box and checks
whether this center error is within specified limits. We employ the
conventional threshold of 20 pixels and consider the tracking as ac-
curate for a frame if the center error is smaller than this value. We
then extract the percentage of accurately predicted bounding boxes
for each sequence in our dataset. EAO, on the other hand, is used to
express accuracy and robustness of the tracker performance with a
single score. At the beginning, the tracker is initialized and allowed
to track the target until the end of the sequence or failure. When
the tracker fails, it is reinitialized again and this process is repeated
a number of times (3 times in our case). The mean of the aver-
age overlaps between the predicted and the ground truth bounding
boxes gives EAO.

4.3. Using Synthetic Data to Evaluate Visual Trackers

Data Generation. To assess the limits of current state-of-the-art
trackers, we use NOVA to generate a new synthetic dataset called
VirtualPTB1 (Virtual Person Tracking Benchmark #1), unique in
terms of its characteristics. As can be seen in Table 2, it includes
sequences with different adverse weather conditions, crowdedness
levels, and challenging factors due to different times of day and
camera altitudes. VirtualPTB1 consists of 108 sequences, which are
on average 5 secs long and have more than 13K frames altogether,
along with per-frame bounding boxes for the persons of interest.
The sequences are annotated with a total of 17 attributes from 6
different classes. Fig. 7 presents sample frames from VirtualPTB1
exhibiting the diversity and the photorealism of the generated se-
quences.

Visual Trackers. To analyze how the state-of-the-art generic ob-
ject trackers perform on VirtualPTB1, we have selected six dif-
ferent correlation filter based tracking approaches, which perform
well on the existing tracking benchmark datasets. These are ECO
[DBSF17], BACF [KFL17], and context aware (CA) [MSG17] ver-
sions of MOSSE, [BBDL10], DCF [HCMB15], SAMF [LZ14] and
STAPLE [BVG*16].

Results. In Fig. 8 and Fig. 9, we demonstrate the overall per-
formances of the trackers on VirtualPTB1. As can be seen from
Fig. 8, there are only a few sequences where the trackers give
highly accurate results. In the remaining ones, they fail to precisely
track the persons of interest, demonstrating how challenging Vir-
tualPTB1 is. According to the precision rates, ECO tracker out-
performs the others. BACF tracker and context aware versions of
STAPLE and SAMF have nearly the same average precision scores
although the sequences they show good performances are differ-
ent. The examined trackers make use of different approaches and,
hence, exhibit nonidentical performances on VirtualPTB1. Another
key observation is that these scores are relatively low as compared
to those reported in benchmark datasets containing real-world se-
quences [DBSF17; KFL17; MSG17]. This is in line with our de-
sign objectives for VirtualPTB1 as it introduces certain challenges
which are mostly not present in the available benchmark sets. Sam-
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Table 2: Distributions of attributes across the sequences in our synthetic person tracking dataset generated by using NOVA.

Attribute Crowdedness Camera Altitude Times of the Day Weather Condition Occlusion Scale Variation
Sub-Attributes 1 Person 3 People 10 People Low Medium High Sunset/Sunrise Midday Night Normal Snow Fog Lightstorm Low High No Yes
# of Sequences 36 36 36 36 36 36 36 36 36 27 27 27 27 80 28 58 50

Figure 7: VirtualPTB1, our proposed synthetic tracking dataset, consists of 108 sequences, each with a unique set of attributes. The first
frames of each sequence are shown here, illustrating the variations in crowdedness, camera altitude, weather conditions and times of day.

 

 

  

 

 

 

 

 

 

  

Figure 8: Heatmap showing the precision of each tracker on each sequence of VirtualPTB1. The last row (Max) indicates the maximum
performance achieved by the set of trackers on each sequence. The last column (Average) shows the average precision of a specific tracker
over all sequences. Each color indicates different scene attribute. Gray, red, green and orange bars demonstrate scene crowdedness, camera
altitude, time of day and weather condition, respectively, for a specific sequence below them by color variations that indicate their sub-
attributes as given in the legend.

ple qualitative tracking results can be found in the supplementary
video.

Our detailed analysis reveals that tracking people in highly
crowded scenes causes the trackers to lose the target very frequently
as the persons of interest are highly likely to be occluded by the

other persons. Moreover, it is noticed that the trackers perform
poorly at night time and in foggy weather conditions. Under these
circumstances, the trackers mostly cannot distinguish the tracked
person from the background. Similarly, high camera altitude poses
certain challenges as well since such altitudes cause the target to
appear very small and, consequently, very hard to track. In Fig. 10,

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John Wiley & Sons Ltd.



Abdulrahman Kerim, Cem Aslan, Ufuk Celikcan, Erkut Erdem & Aykut Erdem / NOVA: Rendering Virtual Worlds with Humans

Figure 9: Precision plot of the evaluated trackers on our dataset.

the corresponding precision plots for these challenging attributes
are shown. Please refer to the supplementary material for an ex-
tended presentation and discussion of the results.

4.4. Using Synthetic Data to Train Visual Trackers

Data Generation and Collection. For our second set of experi-
ments, we employed NOVA to generate a set of synthetic sequences
that can be used to train deep learning based trackers. Here, we con-
sider different training scenarios including synthetic and real se-
quences, and also a hybrid of those. In contrast to the former part,
we carry our analysis on real test sequences for this set of experi-
ments. In particular, NOVA is used generate 97 synthetic sequences
and their ground truths annotations with pixel-level accuracy. How-
ever, to match the characteristics of the available real datasets, we
limit the weather attribute to normal weather conditions, namely,
clear-sky and three different variations of cloudy weather condi-
tions. At the same time, we vary all other procedural generation
parameters such as time of day, camera type, scene crowdedness
and environment. In creating this set, it was aimed to mimic the
general pattern of the existing real-world datasets, maintaining both
the photorealism and the diversity at compatible levels.

In addition to the created synthetic dataset, we collect 125 real-
world sequences from OTB100 [WLY15], VOT [KML*16;
KML*19], TC128 [LBL15], UAV123 [MSG16], NUS-
PRO [LLW*16] and MOT [MLR*16] datasets. We especially pick
the sequences containing humans in outdoor environments and
under normal weather conditions. Finally, we randomly divide
these 125 real sequences into training and testing parts, where 97
sequences were selected for training and 28 for testing.

Please refer to the supplementary material for some sample
frames from the synthetic and real-world sequences used. The syn-
thetic sequences along with a file containing the links to the real-
world sequences are provided at our project website under the name
HybridPTB (Hybrid Person Tracking Benchmark).

Visual Trackers. We employ two state-of-the-art deep trackers in
our experiments, namely CFNet [VBH*17] and DiMP [BDGT19].
Correlation filter based tracking (CFNet) is a deterministic, end-
to-end representation learning tracker which considers correlation

Figure 10: Precision plots for the four challenging cases. Crowded
scenes, night time, foggy weather and high camera altitude all
cause a clear performance degradation.

filter (CF) as a differentiable layer in a CNN architecture. This al-
lows the error gradients to pass through the CF layer and tune the
CNN features. DiMP, on the other hand, is a deep-learning based
tracker that depends on Siamese architecture which accounts for
the target and the background information while predicting the tar-
get object’s location. The parameters of the tracker is learned in an
end-to-end manner using a discriminative loss function.

Training Protocol. We consider training scenarios for the two deep
trackers in two different schemes, as follows.

Training from Scratch. In the first scheme, we train each tracker
from scratch by randomly initializing the model parameters using a
different training set in each training scenario. The first scenario in-
volves training the trackers using only the synthetic sequences gen-
erated by NOVA (E1). For the second one, the trackers are trained
by employing only the real sequences from the training split of the
dataset we collected (E2). Finally, in the last scenario, we consider
a hybrid approach and explore the advantages of expanding the set
of real sequences with the synthetic ones and training the trackers
using this combined set (E3).

Fine-Tuning. For this scheme, instead of training the trackers from
scratch, we perform fine-tuning considering their pre-trained ver-
sions again in three different scenarios. In the first and the second
scenarios, the trackers are fine-tuned considering only the synthetic
sequences (E4) and only the real training sequences (E5), respec-
tively. The third scenario involves fine-tuning using the hybrid set
containing both the synthetic and real sequences (E6).

Results. In Fig. 11, the results of our quantitative analysis are pre-
sented with the average overlap scores for DiMP and CFNet track-
ers obtained with each training scenario and compared to the base-
line scores. Given the stochastic nature of DiMP tracker, we report
the average and the standard deviation of its results for five rep-
etitions. While training the trackers from scratch, using the syn-
thetic sequences achieves better results as compared to using real
sequences. Basically, this advantage can be attributed to the diverse
and realistic nature of our synthetically generated sequences, which
cover different environments, including indoor and outdoor ones,
diverse weather conditions, multiple time of days, various camera
types and distinctive humans. These factors enrich the generaliza-
tion capability of the trained trackers, allowing them to learn better
features and lead to more accurate results even on the real testing
sequences. Moreover, comparable performances with the baseline
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Figure 11: EAO scores obtained with the six different training sce-
narios as compared to those of the baselines. Error bars on the
DiMP results give the standard deviation of the EAO score. Fine-
tuning the baselines on a mixture of synthetic and real sequences
improves the performance. At the same time, training on synthetic
sequences alone achieves better results compared to training solely
on real sequences.

models are achieved using only 97 synthetic sequences. Note that,
in their original setting, the baseline CFNet model was trained us-
ing 3862 sequences with more than 1 million frames while the base-
line DiMP model was trained by four different datasets, namely,
LaSOT [FLY*19], GOT10k [HZH19], TrackingNet [MBG*18],
and COCO [LMB*14], which amount to a much larger set than
the number of our training sequences. As for our fine-tuning exper-
iments, we found out that fine-tuning the baseline models of DiMP
and CFNet trackers on the mixture of synthetic and real sequences
improves their performances to a greater extent as expected. The
gain is especially significant for CFNet, whose baseline model was
pre-trained on ILSVRC Video dataset that does not contain humans
as objects of interest. Another important observation is that fine-
tuning the baselines only on our synthetic sequences seems more
advantageous than fine-tuning on real-world sequences alone. This
further demonstrates the advantage of using our synthetic data. It
is worth noting that, these results are also taken to indicate that
the domain gap due to the differences between the synthetic and
the real-world sequences seems to be minimal. Although the track-
ers were trained on NOVA’s synthetic sequences and testing was
carried out on real-world sequences, i.e., our training and test se-
quences do not share the same level of photorealism, it is seen that
using synthetic person sequences during training let the trackers
learn more fine-grained features for person tracking, and, in return,
leads to better performances.

5. Discussion

As a case study, we considered visual tracking and employed our
proposed NOVA framework to create two different datasets for dif-
ferent purposes. The first dataset, VirtualPTB1, includes 108 se-
quences with automatically generated ground truths and and a to-
tal of 17 scene level attributes. Under short-term tracking scenar-
ios, the sequences demonstrate a wide variety of factors includ-
ing weather conditions, times of day, overall crowdedness of the
scene, camera altitude, occlusion and scale variation. Our thorough
analysis of various state-of-the-art trackers on VirtualPTB1 sheds

light on trackers’ weaknesses in adverse conditions such as high
crowdedness, high camera altitude, night time, and foggy weather.
Our second synthetic dataset, on the other hand, consists of 97 se-
quences with normal weather conditions. We have used this dataset
to train two deep trackers, CFNet and DiMP. Our results reveal
that using our synthetic sequences during training leads to a per-
formance boost in several aspects for both of these trackers. Thus,
it is shown that the variety and the level of realism of the scene at-
tributes in our dataset make it a good proxy of the real-world for
evaluating and training visual trackers.

5.1. Limitations and Future Work

Investigating the usability of synthetic data generated by the NOVA
rendering engine is an important aspect of this study. Here, we
demonstrated that using synthetic data generated by NOVA can
both boost the performance of the state-of-the-art trackers and pro-
vide a better medium for testing tracking algorithms under a num-
ber of challenging attributes. However, one concern is the general-
izability of these findings to other computer vision tasks such as se-
mantic segmentation, depth estimation and so on. Considering the
procedural generation capabilities of NOVA, including rich vari-
ety of annotations it can produce, there are various other directions
that can be explored to thoroughly address the matter. Accordingly,
it is our plan to extend this study toward exploring other computer
vision tasks in future works.

The lack of performance of the trackers on NOVA’s synthetic test
sequences could be partially attributed to the domain gap problem,
as the trackers were trained on real-world data. However, the pho-
torealism of the generated sequences is expected to have mitigated
this gap. In parallel to that, the improvement in performance of
the deep trackers on tests with real-world data upon having been
trained on the synthetic data sheds light on the cohesion of the
synthetic data with real-world data. In addition, the fact that not
just the deep trackers but also the correlation-filter -based track-
ers, which rely solely on online learning, showed poor performance
on NOVA’s synthetic test sequences further signifies that the main
factor at play is the challenging nature of these sequences as the
domain gap is not thought to cause such a clear degradation in per-
formance across the board.

As a future work, we plan to increase the procedural generation
capabilities of NOVA, especially regarding the generation of dy-
namic scene elements other than humans. The feasibility of using
physically based rendering will be explored for enhancing the level
of provided photorealism. Additionally, we are planning to imple-
ment other camera types such as body-worn cameras and third-
person-view cameras along with camera artifacts such as motion
blur and chromatic aberration to simulate a wider range of real-
world video captures. Moreover, using NOVA, we are planning to
generate a special benchmark for evaluating the performance of
general purpose trackers under adverse weather conditions.

6. Conclusion

In this work, we have presented a novel engine called NOVA for
creating photorealistic 3D rendered worlds containing synthetic hu-
mans, along with ground truth annotations at scene, object and pixel
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-levels. The proposed framework automates data collection and la-
beling pipeline for a wide range of low and high-level computer
vision tasks. In particular, the engine emphasizes procedural gener-
ation of humans, which makes NOVA unique compared to existing
systems. It allows to produce diverse arrays of human agents, in
terms of body shape, clothing, gender and age characteristics, ac-
cessories and action variety. Moreover, NOVA allows to play with
weather and illumination conditions within the created 3D virtual
worlds, establishing it as a test bed for evaluating adverse cases
such as low light, nighttime, rain, snow, or fog. These capabil-
ities make NOVA a distinct and versatile framework to quickly
generate arbitrarily large amounts of synthetic data for a multi-
tude of computer vision tasks. These large synthetic datasets can
be used in model training to boost the performance of state-of-the-
art learning based computer vision models. Our results show that
the scenes that are either highly crowded, or taking place at night
or at foggy weather conditions pose certain challenges for the state-
of-the-art trackers. It is also seen that using synthetic data generated
by NOVA for training can boost the performance of learning-based
trackers on real videos.

An online demo of NOVA and videos illustrating NOVA’s
capabilities are available at the project website https://
graphics.cs.hacettepe.edu.tr/NOVA along with Vir-
tualPTB1 and HybridPTB, featuring the synthetic sequences gen-
erated by NOVA for the first and the second set of experiments,
respectively.

Acknowledgements

We thank the anonymous reviewers for their constructive comments
that helped improve this work. This work was supported in part
by TUBITAK-1001 Program (Grant No. 217E029), GEBIP 2018
fellowship of Turkish Academy of Sciences awarded to E. Erdem,
and BAGEP 2021 Award of the Science Academy awarded to A.
Erdem.

References
[BBDL10] BOLME, DAVID S., BEVERIDGE, J. ROSS, DRAPER, BRUCE

A., and LUI, YUI MAN. “Visual object tracking using adaptive corre-
lation filters”. The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 2010 8.

[BDGT19] BHAT, GOUTAM, DANELLJAN, MARTIN, GOOL, LUC VAN,
and TIMOFTE, RADU. “Learning discriminative model prediction for
tracking”. Proceedings of the IEEE International Conference on Com-
puter Vision. 2019, 6182–6191 10.

[BSL*11] BAKER, SIMON, SCHARSTEIN, DANIEL, LEWIS, JP, et al. “A
database and evaluation methodology for optical flow”. International
Journal of Computer Vision 92.1 (2011), 1–31 3.

[BVG*16] BERTINETTO, LUCA, VALMADRE, JACK, GOLODETZ, STU-
ART, et al. “Staple: Complementary learners for real-time tracking”. Pro-
ceedings of the IEEE conference on computer vision and pattern recog-
nition. 2016, 1401–1409 8.

[BWSB12] BUTLER, DANIEL J, WULFF, JONAS, STANLEY, GARRETT
B, and BLACK, MICHAEL J. “A naturalistic open source movie for
optical flow evaluation”. European Conference on Computer Vision.
Springer. 2012, 611–625 3.

[CCC*15] CAO, LIJUN, CHEN, WEIHUA, CHEN, XIAOTANG, et al. “An
equalised global graphical model-based approach for multi-camera ob-
ject tracking”. arXiv preprint arXiv:1502.03532 (2015) 8.

[CWB*16] CHEUNG, ERNEST, WONG, TSAN KWONG, BERA, ANIKET,
et al. “Lcrowdv: Generating labeled videos for simulation-based crowd
behavior learning”. European Conference on Computer Vision. Springer.
2016, 709–727 3.

[DBSF17] DANELLJAN, MARTIN, BHAT, GOUTAM, SHAHBAZ KHAN,
FAHAD, and FELSBERG, MICHAEL. “Eco: Efficient convolution oper-
ators for tracking”. Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2017, 6638–6646 8.

[DDS*09] DENG, J., DONG, W., SOCHER, R., et al. “ImageNet: A Large-
Scale Hierarchical Image Database”. CVPR09. 2009 2.

[Deb02] DEBEVEC, PAUL. “Image-based lighting”. IEEE Computer
Graphics and Applications 22.2 (2002), 26–34 5.

[DGCP17] DE SOUZA, CÉSAR ROBERTO, GAIDON, ADRIEN, CABON,
YOHANN, and PEÑA, ANTONIO MANUEL LÓPEZ. “Procedural Gener-
ation of Videos to Train Deep Action Recognition Networks.” CVPR.
2017, 2594–2604 2, 3.

[FLY*19] FAN, HENG, LIN, LITING, YANG, FAN, et al. “Lasot: A high-
quality benchmark for large-scale single object tracking”. Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition.
2019, 5374–5383 11.

[GLU12] GEIGER, ANDREAS, LENZ, PHILIP, and URTASUN, RAQUEL.
“Are we ready for autonomous driving? the kitti vision benchmark
suite”. Computer Vision and Pattern Recognition (CVPR), 2012 IEEE
Conference on. IEEE. 2012, 3354–3361 3.

[GWCV16] GAIDON, ADRIEN, WANG, QIAO, CABON, YOHANN, and
VIG, ELEONORA. “Virtual worlds as proxy for multi-object tracking
analysis”. Proceedings of the IEEE conference on computer vision and
pattern recognition. 2016, 4340–4349 3.

[GZW*] GE, YUYING, ZHANG, RUIMAO, WU, LINGYUN, et al. “A Ver-
satile Benchmark for Detection, Pose Estimation, Segmentation and Re-
Identification of Clothing Images”. () 2.

[HCMB15] HENRIQUES, JOÃO F, CASEIRO, RUI, MARTINS, PEDRO,
and BATISTA, JORGE. “High-speed tracking with kernelized correlation
filters”. IEEE transactions on pattern analysis and machine intelligence
37.3 (2015), 583–596 8.

[HUI13] HALTAKOV, VLADIMIR, UNGER, CHRISTIAN, and ILIC, SLO-
BODAN. “Framework for generation of synthetic ground truth data for
driver assistance applications”. German Conference on Pattern Recogni-
tion. Springer. 2013, 323–332 3.

[HZH19] HUANG, LIANGHUA, ZHAO, XIN, and HUANG, KAIQI. “Got-
10k: A large high-diversity benchmark for generic object tracking in the
wild”. IEEE Transactions on Pattern Analysis and Machine Intelligence
(2019) 11.

[KFL17] KIANI GALOOGAHI, HAMED, FAGG, ASHTON, and LUCEY, SI-
MON. “Learning background-aware correlation filters for visual track-
ing”. Proceedings of the IEEE International Conference on Computer
Vision. 2017, 1135–1143 8.

[KH09] KRIZHEVSKY, ALEX and HINTON, GEOFFREY. Learning multi-
ple layers of features from tiny images. Tech. rep. Citeseer, 2009 2.

[KML*16] KRISTAN, MATEJ, MATAS, JIRI, LEONARDIS, ALEŠ, et al. “A
Novel Performance Evaluation Methodology for Single-Target Track-
ers”. IEEE Transactions on Pattern Analysis and Machine Intelligence
38.11 (Nov. 2016), 2137–2155. ISSN: 0162-8828. DOI: 10 . 1109 /
TPAMI.2016.2516982 8, 10.

[KML*19] KRISTAN, MATEJ, MATAS, JIRI, LEONARDIS, ALES, et al.
“The seventh visual object tracking vot2019 challenge results”. Proceed-
ings of the IEEE International Conference on Computer Vision Work-
shops. 2019, 0–0 8, 10.

[LBL15] LIANG, PENGPENG, BLASCH, ERIK, and LING, HAIBIN. “En-
coding color information for visual tracking: Algorithms and bench-
mark”. IEEE Transactions on Image Processing 24.12 (2015), 5630–
5644 8, 10.

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John Wiley & Sons Ltd.

https://graphics.cs.hacettepe.edu.tr/NOVA
https://graphics.cs.hacettepe.edu.tr/NOVA
https://doi.org/10.1109/TPAMI.2016.2516982
https://doi.org/10.1109/TPAMI.2016.2516982


Abdulrahman Kerim, Cem Aslan, Ufuk Celikcan, Erkut Erdem & Aykut Erdem / NOVA: Rendering Virtual Worlds with Humans

[LLW*16] LI, A, LIN, M, WU, Y, et al. “NUS-PRO: A New Visual Track-
ing Challenge”. IEEE Transactions on Pattern Analysis and Machine In-
telligence 38.2 (2016), 335–349 8, 10.

[LMB*14] LIN, TSUNG-YI, MAIRE, MICHAEL, BELONGIE, SERGE, et
al. “Microsoft coco: Common objects in context”. European conference
on computer vision. Springer. 2014, 740–755 2, 7, 11.

[LWT*18] LI, XUAN, WANG, KUNFENG, TIAN, YONGLIN, et al. “The
ParallelEye Dataset: A Large Collection of Virtual Images for Traffic
Vision Research”. IEEE Transactions on Intelligent Transportation Sys-
tems 99 (2018), 1–13 3.

[LZ14] LI, YANG and ZHU, JIANKE. “A scale adaptive kernel correlation
filter tracker with feature integration”. European conference on computer
vision. Springer. 2014, 254–265 8.

[MBG*18] MULLER, MATTHIAS, BIBI, ADEL, GIANCOLA, SILVIO, et al.
“Trackingnet: A large-scale dataset and benchmark for object tracking in
the wild”. Proceedings of the European Conference on Computer Vision
(ECCV). 2018, 300–317 11.

[MLR*16] MILAN, ANTON, LEAL-TAIXÉ, LAURA, REID, IAN, et al.
“MOT16: A benchmark for multi-object tracking”. arXiv preprint
arXiv:1603.00831 (2016) 8, 10.

[MSG16] MUELLER, MATTHIAS, SMITH, NEIL, and GHANEM,
BERNARD. “A benchmark and simulator for uav tracking”. European
conference on computer vision. Springer. 2016, 445–461 8, 10.

[MSG17] MUELLER, MATTHIAS, SMITH, NEIL, and GHANEM,
BERNARD. “Context-Aware Correlation Filter Tracking”. The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). July
2017 8.

[QY16] QIU, WEICHAO and YUILLE, ALAN. “Unrealcv: Connecting
computer vision to unreal engine”. European Conference on Computer
Vision. Springer. 2016, 909–916 3.

[RHK17] RICHTER, STEPHAN R, HAYDER, ZEESHAN, and KOLTUN,
VLADLEN. “Playing for benchmarks”. Proceedings of the IEEE Inter-
national Conference on Computer Vision. 2017, 2213–2222 2, 3.

[RSM*16] ROS, GERMAN, SELLART, LAURA, MATERZYNSKA,
JOANNA, et al. “The synthia dataset: A large collection of synthetic
images for semantic segmentation of urban scenes”. Proceedings of
the IEEE conference on computer vision and pattern recognition.
2016, 3234–3243 3.

[RSZ*16] RISTANI, ERGYS, SOLERA, FRANCESCO, ZOU, ROGER, et
al. “Performance measures and a data set for multi-target, multi-
camera tracking”. European Conference on Computer Vision. Springer.
2016, 17–35 8.

[RVRK16] RICHTER, STEPHAN R, VINEET, VIBHAV, ROTH, STEFAN,
and KOLTUN, VLADLEN. “Playing for data: Ground truth from com-
puter games”. European Conference on Computer Vision. Springer.
2016, 102–118 2, 3.

[SLS16] SHAFAEI, ALIREZA, LITTLE, JAMES J, and SCHMIDT, MARK.
“Play and learn: Using video games to train computer vision models”.
arXiv preprint arXiv:1608.01745 (2016) 2, 3.

[Sys] SYSTEM, UNITY MULTIPURPOSE AVATAR. UMA git repo. https:
//github.com/umasteeringgroup/UMA. Online; accessed:
2019-02-20 4.

[TCB07] TAYLOR, GEOFFREY R, CHOSAK, ANDREW J, and BREWER,
PAUL C. “Ovvv: Using virtual worlds to design and evaluate surveillance
systems”. Computer Vision and Pattern Recognition, 2007. CVPR’07.
IEEE Conference on. IEEE. 2007, 1–8 2, 3.

[Uni] UNITY. Rendering with Replaced Shaders. https : / / docs .
unity3d.com/Manual/SL-ShaderReplacement.html. On-
line; accessed: 2019-02-20 6.

[VBH*17] VALMADRE, JACK, BERTINETTO, LUCA, HENRIQUES, JOAO,
et al. “End-to-end representation learning for correlation filter based
tracking”. Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 2017, 2805–2813 10.

[WLY15] WU, Y., LIM, J., and YANG, M. “Object Tracking Benchmark”.
IEEE Transactions on Pattern Analysis and Machine Intelligence 37.9
(Sept. 2015), 1834–1848. ISSN: 0162-8828. DOI: 10.1109/TPAMI.
2014.2388226 8, 10.

[Wor] WORLDS, PROCEDURAL. Enviro webpage. Online; accessed: 2019-
02-20. URL: http://www.procedural-worlds.com/gaia/
gaia-extensions/enviro/ 5.

[WU18] WRENNINGE, MAGNUS and UNGER, JONAS. “Synscapes: A
photorealistic synthetic dataset for street scene parsing”. arXiv preprint
arXiv:1810.08705 (2018) 3.

[Zaa] ZAAL, G. HDRI Haven. https://hdrihaven.com/hdris.
Online; accessed: 2019-02-20 6.

[ZSFR15] ZHANG, SHU, STAUDT, ELLIOT, FALTEMIER, TIM, and ROY-
CHOWDHURY, AMIT K. “A camera network tracking (CamNeT) dataset
and performance baseline”. 2015 IEEE Winter Conference on Applica-
tions of Computer Vision. IEEE. 2015, 365–372 8.

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John Wiley & Sons Ltd.

https://github.com/umasteeringgroup/UMA
https://github.com/umasteeringgroup/UMA
https://docs.unity3d.com/Manual/SL-ShaderReplacement.html
https://docs.unity3d.com/Manual/SL-ShaderReplacement.html
https://doi.org/10.1109/TPAMI.2014.2388226
https://doi.org/10.1109/TPAMI.2014.2388226
http://www.procedural-worlds.com/gaia/gaia-extensions/enviro/
http://www.procedural-worlds.com/gaia/gaia-extensions/enviro/
https://hdrihaven.com/hdris

