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Abstract

With the growing interest in computational models of visual attention, saliency

prediction has become an important research topic in computer vision. Over

the past years, many di↵erent successful saliency models have been proposed

especially for image saliency prediction. However, these models generally do not

consider the dynamic nature of the scenes, and hence, they work better on static

images. To date, there has been relatively little work on dynamic saliency that

deals with predicting where humans look at videos. In addition, previous studies

showed that how the feature integration is carried out is very crucial for more

accurate results. Yet, many dynamic saliency models follow a similar simple

design and extract separate spatial and temporal saliency maps which are then

integrated together to obtain the final saliency map. In this paper, we present a

comparative study for di↵erent feature integration strategies in dynamic saliency

estimation. We employ a number of low and high-level visual features such as

static saliency, motion, faces, humans and text, some of which have not been

previously used in dynamic saliency estimation. In order to explore the strength

of feature integration strategies, we investigate four learning-based (SVM, Gra-

dient Boosting, NNLS, Random Forest) and two transformation-based (Mean,

Max) fusion methods, resulting in six new dynamic saliency models. Our exper-
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imental analysis on two di↵erent dynamic saliency benchmark datasets reveal

that our models achieve better performance than the individual features. In

addition, our learning-based models outperform the state-of-the-art dynamic

saliency models.

Keywords: Dynamic saliency, feature integration, learning visual saliency

1. Introduction

Visual attention is a key mechanism of the human visual system, and is

responsible from filtering out the irrelevant parts of the visual data to focus

more on the relevant parts. Many researchers from very di↵erent fields have

tried to mimic the human attention mechanism through the use of comput-

ers by developing computational attention models. Especially, the recent years

have witnessed significant progress in this field, and a large number of saliency

models have been proposed, which are now being used in many di↵erent ma-

chine vision applications such as object detection [1], image classification [2] and

summarization [3].

In existing literature, the models developed so far largely aim to predict

where humans fixate their eyes in images. Inspired by the theoretical works

such as Feature Integration Theory [4] or Guided Search Model [5], these mod-

els consider either low-level image features or high-level features, or a combi-

nation of both. For instance, Itti et al. [6] proposed to use center surround

di↵erences of bottom up features such as color, intensity and orientation. The

GBVS model [7], which formulates the prediction task as a graph problem em-

ploys similar features. Some models such as AIM [8] consider a patch-based

representation and formulates saliency from an information theoretic point of

view. Moreover, other works exploit high-level features, such as using faces

in the images as in [9]. The e↵ectiveness of these models are directly related

to the features and the feature integration strategies used in the prediction

step. Learning-based saliency models such as [10] and [11], solve the integration

problem from a machine learning perspective by formulating the problem as a
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classification problem and by learning the optimal weights used in the feature

integration.

While the recently proposed static saliency models [12, 13] have reported

very impressive results, their main drawback is that they don’t consider any

temporal information so they dont work well for videos where the content is

changing rapidly. Although the main focus in the literature right now is on

the static saliency prediction task, we know that we humans have an active

vision system. Hence, evaluations on the benchmark datasets consisting of static

images is a bit misleading since they can not fully reflect the e↵ectiveness of

static saliency models when dealing with dynamic nature of natural scenes.

As a consequence, researchers have also developed dynamic saliency models

which can cope with the dynamic changes in the scenes [6, 14, 15, 16]. Most

of these models employ static features such as color and intensity along with

dynamic features, representing mainly the motion in the scenes, since dynamic

saliency is strongly related with the change in both spatial and temporal fea-

tures. However, this makes dynamic saliency a much more challenging problem

than static saliency, further complicating the feature integration step of the

saliency estimation pipeline. For example, in dynamic scenes, attention can

be gathered on a simple moving object. It doesn’t have to be very di↵erent

from the surrounding objects by means of the Gestalt principles. Moving in

di↵erent direction than others is enough to make it more attractive to atten-

tion mechanisms. Many features (color, motion, faces, text, etc.) are known to

be e↵ective in predicting visual saliency. Each feature has its own individual

saliency map, however, as discussed, they do not need to contribute equally to

the final saliency map.

In this paper, we propose a comparative study of features and feature in-

tegration strategies for dynamic saliency to address the aforementioned issues.

Our contributions are as follows: (1) We conduct an analysis of individual ef-

fectiveness of several low and high-level visual features for dynamic saliency.

These features include two low-level features, static saliency and motion con-

trast, and three semantic features, faces, humans and text. (2) We investigate
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di↵erent feature integration strategies for dynamic saliency estimation, which

consist of learning-based methods containing early and late fusion models, and

transformation based methods containing max and mean combination schemes.

(3) We provide a thorough analysis of these features and feature integration

schemes on two di↵erent benchmark datasets, namely CRCNS-ORIG [17] and

UCF-Sports [18]. (4) Our experimental results reveal that our models in general

outperform the individual features, and in particular, our learning-based models

give better results than the state-of-the-art dynamic saliency models.

The rest of this paper is as follows: In Section 2, we provide a brief summary

of the existing dynamic saliency models. After that, in Section 3, we explain

the feature integration strategies that we propose to use in dynamic saliency es-

timation. In Section 4, we give the details of our experimental setup containing

benchmark datasets, visual features and evaluation metrics. In Section 5, we

present our experimental analysis about the e↵ectiveness of the individual fea-

tures and the proposed feature integration models, and compare them against

the state-of-the-art dynamic saliency models. Finally, in the last section, we

provide a summary of our study and discuss possible future research directions.

2. Related Work

Historically, the research on visual saliency estimation has primarily focused

on predicting saliency in static scenes, so early works on dynamic saliency es-

timation were just straightforward extensions of static models [6, 19, 20, 21,

22, 23]. Itti and Baldi [6] proposed one of the early dynamic saliency models,

which employs temporal onset/o↵set, motion energy and orientation contrast

along with commonly used features of intensity and color contrast and utilizes

a Bayesian theory of surprise to find important regions in videos. Zhang et

al. [19] adapted their novelty detection based approach for static images ([24])

to work on videos, where they propose to compute certain statistics about po-

tentially novel regions from a training set of dynamic scenes. Seo and Milan-

far [20] employed local steering kernels to structurally compare a pixel with its

4



immediate surrounding neighbors, and demonstrated that this approach can be

easily extended to videos by additionally considering temporal information. Cui

et al. [21] proposed a fast frequency domain approach by modifying their static

model based on spectral residual analysis into the temporal space. Fourier spec-

tral analysis on temporal slices of video frames along X-T and Y-T planes are

carried out to separate salient regions from the background. Guo and Zhang [22]

proposed phase spectrum of quaternion Fourier transform model, which makes

Fourier transformation over quaternion representation of a frame formed by in-

tensity, motion and two color channels. In [23], Fang et al. suggested another

dynamic saliency model by extending their static model [25] which predicts

saliency in the compressed domain. In particular, they use discrete cosine trans-

form (DCT) to extract di↵erent feature channels for luminance, color, texture

along with motion and then estimate DCT block di↵erences based on Hausdor↵

distance for saliency prediction.

In the literature, there has also been some works which take a more holistic

approach to understand dynamic saliency in its entirety [26, 14, 27, 28, 29].

Hou and Zhang [26] proposed a dynamic saliency model based on the rarity of

visual features in space and time. For that purpose, they introduced an objec-

tive function which depends on maximizing the entropy gain of features via the

notion of incremental coding length. In another biologically inspired model [14],

Marat et al. developed a two-stream architecture to mimic the bottom-up and

top-down processes of human visual system in which the extracted static and

dynamic features are combined with di↵erent fusion strategies. In [27], Ma-

hadevan and Vasconcelos proposed a dynamic center-surround saliency model

inspired by biological motion perception mechanisms where they model video

patches as dynamic textures (DTs) and compute center-surround di↵erences by

Kullback-Leibler (KL) divergence between the dynamic textures. Zhou et al. [28]

employed the idea of predictive coding and proposed to use the phase change

of Fourier spectra to detect the moving objects against dynamic backgrounds

where the saliency map is computed based on the displacement vector. Fang

et al. [29] demonstrated the use of compressed domain features in saliency esti-
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mation and they proposed to apply uncertainty weighting to combine temporal

and spatial feature channels.

The last group of dynamic saliency models [30, 31, 32] additionally encode

video frames via super-pixels and model the temporal feature relations accord-

ingly. For example, Liu et al. [30] proposed to use super-pixels and frame-level

motion and color histograms as global and local features and obtained final

saliency maps in an adaptive manner by considering consistency and stability

of spatial and temporal feature channels. In [31], Liu et al. proposed a bidi-

rectional temporal saliency propagation model which employs local and global

contrast features based on super-pixels-based motion and color cues. Similarly

in [32], the authors proposed another super-pixels based saliency model which

uses accumulated motion histograms and trajectories of super-pixels that are

used to extract entropy-based velocity descriptors.

As mentioned before, feature integration is an integral part of the saliency

estimation pipeline. Traditionally, most of the existing approaches utilize trans-

formation based fusion approaches such as taking the mean or the maximum,

but lately researchers have started investigating the use of machine learning

techniques to directly learn how to perform this step from the data. In [33],

Li et al. presented a dynamic saliency model in which they addressed the fea-

ture integration issue within a Bayesian multi-task learning and proposed to

learn adaptive weights to fuse together bottom-up (stimulus driven) and top-

down (task related) maps. Liu et al. [15] extended their salient object detection

model to videos where they employ static and dynamic features and used a con-

ditional random field model to learn linear weights to integrate these features.

Mathe and Sminchisescu [18] presented a Multiple Kernel Learning framework

for saliency estimation in videos which learns to combine several low-, mid- and

high-level features based on static image and motion information. Rudoy et

al. [34] used a sparse set of candidate gaze locations based on static, motion and

semantic cues and utilized random forest regression to learn transition proba-

bilities between fixation candidates over time. Nguyen et al. [16] introduced a

linear regression based saliency estimation method in which two neural networks
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Figure 1: Taxonomy of dynamic saliency models

are trained to find optimal weights for fusing static and dynamic saliency maps

at each frame.

From the feature integration point of view, dynamic saliency models can be

gathered into three di↵erent groups: probabilistic models, transformation-based

and learning-based models. In probabilistic models, integrating visual features is

generally carried out by means of a Bayesian inference or a statistical encoding.

In that sense, the fusion of features are performed in an implicit manner. For

instance, some of these models encode the information provided by the visual

data through local steering kernels [20], a dynamic texture model [27] or incre-

mental coding length [26]. Rather than formulating the feature integration im-

plicitly, transformation-based and learning-based formulations employ explicit

fusion strategies. In particular, transformation-based integration models em-

ploy either Fourier transformation [21, 22, 28] or simple integrations like mean

or max [14]. On the other hand, learning based strategies formulate saliency

estimation as a regression or classification problem and find optimal integration

weights for features by using machine learning techniques. For example, some

of these models employ conditional random fields [15, 35], multiple kernel learn-

ing [18], linear regression [16] or random forest classifiers [34]. To summarize, a

taxonomy of the existing dynamic saliency models is given in Figure 1.

In the next section, we will discuss feature integration in saliency estimation
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in more detail. We will review the existing fusion strategies by abstracting away

approach-specific details, and give a summary and discussion of each integration

scheme evaluated in our study.

3. Feature Integration Strategies for Dynamic Saliency

Feature integration plays a key role in saliency estimation. In the literature,

feature integration strategies have been investigated only for the static saliency

problem. For instance, in [36], Le Meur and Liu analyzed di↵erent feature

integration schemes and their impact on the results obtained by combining a

number of existing static saliency models accordingly. In [37], Wang et al.

performed a similar analysis by considering similar integration strategies. Their

results demonstrate that the performances of these individual models can be

further enhanced by combining them with the relevant integration schemes. In

our work, we provide a similar analysis for dynamic saliency.

As mentioned in the previous section, most of the existing dynamic saliency

models have a common pipeline. They first extract individual saliency maps

based on certain features such as appearance and motion, and then they combine

these maps to output the predicted final saliency maps. In that respect, it is

worth noting that both the feature selection and the feature combination steps

are very important to have an e↵ective dynamic saliency model and to provide

more accurate prediction results. Motivated by this observation, in our study, we

investigate the e↵ects of several visual features and di↵erent feature integration

strategies for dynamic saliency estimation. Our visual features, which will be

thoroughly explained in the next section, cover a wide range of low and high-

level features. These features are used to extract individual saliency maps,

which are then fed to the feature integration approaches as inputs to predict

the final saliency maps.

Figure 2 presents the system diagram of our analysis scheme with the inves-

tigated features and the feature integration models. In our study, we propose to

fuse the visual features by considering explicit integration schemes. In partic-
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Figure 2: Features and feature integration schemes that we analyze for dynamic saliency

prediction.

ular, we investigate two di↵erent integration schemes, namely transformation-

based and learning-based models.

3.1. Transformation-Based Integration

In transformation-based fusion models, the prior exposure to the relevant

data does not play any role. The saliency scores from the individual maps are

first normalized to a specific range, generally between 0 and 1, and then these

normalized scores are combined by using fixed, simple rules. As in Wang et

al. [37], in our analysis, we consider two types of transformation based models

to investigate the e↵ect of this simple integration scheme:

Mean. Mean rule computes the mean value of all individual feature scores and

output it as the final saliency score. This strategy considers that all the features

are equally important.

Max. Max rule chooses the maximum score amongst all the individual feature

scores and output it as the final saliency score. This strategy assumes that the

individual features are in a competition with each other to explain the perceived

saliency.
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3.2. Learning-Based Integration

In learning-based fusion models, saliency prediction is formulated as either

a classification or a regression problem, and the related machine learning tech-

niques are employed to predict the saliency scores over the extracted features.

They carry out feature integration in a more sophisticated manner as compared

to the rules-driven transformation-based models. However, their main advan-

tage over transformation-based models lies in the fact that through learning

they can reveal the correlations among the individual features, which are in

return used to integrate them in a more e↵ective way.

Learning-based models can be categorized into two groups in terms of how

feature integration is performed as early and late integration schemes. While

late integration schemes such as boosting make too many independence as-

sumptions, early integration schemes such as such as linear support vector ma-

chines and non-negative least squares allow too many dependencies. In early

integration, all the features are combined in an early level in a linear manner

with the optimal weights learned through training. On the other hand, late

fusion schemes consider non-linear integration strategies and combine the fea-

tures step-by-step to learn an optimal prediction function. In that regard, early

integration models are simpler, faster, and computationally less expensive than

the late integration models like boosting and random forests, which are usually

more slower, and computationally more expensive but more powerful.

Support Vector Machines (SVM). We train a linear SVM model by cast-

ing the saliency prediction as an L2 regularized logistic regression problem, as

follows:

min
x

1

2
wTw + C

nX

i=1

log(1 + e�yiwT xi) , (1)

where xi is the n-dimensional feature vector, yi 2 {1, 0} is its label, with 1

denoting the positive, salient samples and 0 denoting the negative, non-salient

samples for our study, and w is the weight vector which separates the positive

and the negative samples, defining a hyperplane in the n-dimensional space. The
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parameter C is used as the regularization parameter which is used to determine

the margin between the separating hyperplane and the training data.

Boosting. To investigate the e↵ect of a nonlinear, late fusion scheme, we

train a classifier by using the gradient boosting approach called XGBoost [38],

a recently proposed, scalable tree boosting classifier. It uses a number of weak

classifiers, and combine their responses to predict the final score as follows:

ŷi = �(xi) =
KX

k=1

fk(xi) . (2)

Here, ŷi is the final score predicted through the objective function �(xi), which

combines K di↵erent weak classifiers fk in the form of regression trees. It is

important to note that unlike the decision trees, the score in a regression tree

is calculated by summing up each score of corresponding leaves. Considered

gradient-based boosting scheme formulates the prediction problem as a contin-

uous optimization problem based on a di↵erentiable loss function, which can be

solved very e�ciently.

Non-negative Least Squares (NNLS). We formulate the saliency predic-

tion as a non-negative least squares problem like Zhao and Koch did for static

saliency [39], and learn the optimal weights through training. Given a number

of samples, this scheme fits a linear model and finds the best fitting weights that

minimize the distance between the weighted combination of the feature saliency

maps and the ground truth human density map as follows:

argmin
x

kAx� yk2 where x � 0 . (3)

Here, A is the individual features, y is the corresponding ground truth map

values, and x is the feature weights used in the combination process.

Random Forests (RF). We train a random forest regressor to analyze a

bag like feature fusion strategy. In particular, we train randomly constructed

regression trees, which are then collected into a random regression forest. Each

regression tree is di↵erent from the others, which gives high robustness against

the noisy data. The final saliency score is computed by taking the mean of each
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individual tree score as follows:

p(y|v) = 1

T

TX

t

pt(y|v) . (4)

Here, T is the number of trees, v = x1, ..., xn is the n-dimensional; feature vector

and pt(y|v) is the decision score of the tree t.

4. Experimental Settings

4.1. Datasets

The performance of a saliency prediction algorithm is measured by the qual-

ity of its saliency maps compared with the recorded eye fixation points of human

subjects. In our study, we test our models on two benchmark datasets, namely

CRCNS-ORIG [17] and UCF-Sports action dataset [40].

CRCNS-ORIG dataset [17]. CRCNS-ORIG dataset is one of the oldest and

most commonly used video dataset for dynamic saliency estimation. It includes

50 video clips, ranging from 6 to 90 seconds, and they are from di↵erent genres

like street scenes, video games and TV programs. The eye fixation data were

collected from 8 subjects. The participants were given no particular instructions

except to observe the video clips. Figure 3 shows some sample frames from

di↵erent clips of the dataset. Some videos contain camera motion and consists

of multiple shots.

UCF-Sports action dataset [40]. UCF-Sports dataset consist of 150 videos

obtained from various sports related TV events and includes 13 di↵erent action

classes. Originally being a benchmark dataset for action recognition, here we

employ the eye fixation data collected for this dataset by Mathe and Sminchis-

escu [18]. It includes data from 16 subjects given task-specific and task-free

instructions. But, in our experiments, we only used the data under the free-

viewing condition. Some sample video frames together with the recorded eye

fixations are shown in Figure 4. Some of the videos contain camera motion but

compared to CRCNS dataset, all are taken in one-shot.
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Figure 3: Sample frames from di↵erent video clips in the CRCNS-ORIG [17] dataset. The

recorded eye fixations are shown with yellow dots.

Figure 4: Sample frames from the videos in UCF-Sports dataset [40]. The eye fixation data

collected in [18] are shown with yellow dots.

4.2. Features

Previous studies on visual attention have shown that human visual attention

is a↵ected by both low-level features like color or texture contrast and high-level

factors in the scene such as objects [41], faces [42, 9] or text [9]. Hence, existing

computational models of saliency usually combine low-level features and high-

level concepts to boost the performance. The main aim of our study is to

evaluate di↵erent feature integration models but we also seek to understand
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(a) (b)

(c) (d) (e)

Figure 5: Sample feature maps and the corresponding groundtruth fixations. (a) Static

saliency, (b) Motion, (c) Faces, (d) Humans, (e) Text.

the influence of di↵erent spatial, temporal, top-down and bottom-up features

in dynamic saliency. For this purpose, we have focused on two low-level cues,

namely static saliency and motion, and three high-level features which are faces,

humans and text. To extract these features, we especially pick state-of-the-

methods since the overall performance is greatly depend on the success of the

individual features. Figure 5 shows some sample feature maps computed for

some of the video frames in the training data.

Static saliency. As a low-level spatial feature, we use the saliency maps ex-

tracted by a recently proposed bottom-up model, referred to as SalNet [12].

This model is a deep convolutional neural network (CNN) based model trained

on SALICON, a large scale image saliency dataset, using Euclidean distance

between ground truth eye fixation map and the prediction as the loss function.

It provides very successful results on SALICON as well as other static saliency

benchmark datasets. Some saliency maps computed with SalNet are shown

in Figure 5 (a).
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(a) (b) (c) (d) (e) (f)

Figure 6: Example motion feature maps. (a) Input frame and the eye fixations, (b) Optical

flow field where hue and saturation indicate the orientation and magnitude, respectively, (c)-

(e) Individual motion maps calculated with patch sizes 4, 8 and 16 and (f) the combined

motion map.

Motion. Continuous displacement of objects between video frames are creating

the perception of motion in human visual system and it is another primary low-

level cue for human attention. As our motion feature, we computed local motion

contrast based on optical flow information computed between consecutive video

frames, as follows:

M(r) = 1� exp(��2
flow(r, r)); (5)

where r and r respectively denote the optical flow histograms for the center and

surround regions, and �2
flow(r, r) is the �2 distance between the histograms.

In order to obtain smoother motion maps, we employ a multi-scale strategy

and compute a separate map for r 2 {4 ⇥ 4, 8 ⇥ 8, 16 ⇥ 16} as the size of the

outer image patch and half of them as the size of the inner patch. Then, we

form the final motion map by taking the multiplication of these motion maps at

di↵erent scales. Figure 6 shows motion maps at di↵erent scales together with

the final map.

Faces. Cognitive studies have shown that faces strongly attract our attention in

a scene [42, 9]. Hence, we decided to use the recently proposedaa face detector of

Yang et al. [43]. This state of the art model is based on a deep CNN architecture

and relies upon detecting certain parts of the faces such as hair, eye, nose, mouth

and beard. To our interest, it also computes a so-called faceness map to indicate

15



Figure 7: Example human feature maps. (a) Input frame and the eye fixations, (b) Pedestrian

detection results, (c) Feature maps formed from the bounding boxes.

probable face regions in a given image so we directly use these faceness maps as

our face feature map. Some example faceness maps are shown in Figure 5(c).

Humans. In situations where there are humans in a scene but they are distant

from the camera, the fixations of the human observers are all around those per-

sons, not concentrated just on the faces. To handle such cases, we additionally

employ DPM pedestrian detector [44] trained on Pascal VOC2010 dataset and

then we fit a Gaussian to the detection box as our feature map. Some example

detection results and the corresponding feature maps are given in Figure 7.

Text. Text is another dominant high-level cue, which attracts attention re-

gardless of the task [9]. In our modern age, text is all around us. It can be

seen in street signs, news headlines, brands, etc. To understand the influence

of this semantic feature, we used the output of the text detection step of the

work by Jaderberg et al. [45], which indicated the most probable text regions in

a given image. This model is again based on a CNN classifier which applies a

set of learned linear filters followed by non-linear transformations in the middle.

Figure 5(e) shows some example text maps calculated for the frames from two

di↵erent TV programs.

4.3. Evaluation Measures

For performance evaluation, we used four popular saliency measures: (1)

Area under the ROC Curve (AUC), (2) shu✏ed AUC, (3) Pearson’s Correlation

Coe�cient (CC), and (4) Normalized Scanpath Saliency (NSS). We report the

mean values of these measures averaged over all the video frames.

In AUC measure, saliency map is thresholded at di↵erent levels and the
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result is treated as a binary classifier of which pixels are labeled as fixated or

not [46] and then they are compared against the human eye fixations that are

provided as ground truth. Finally, the success of the saliency model is measured

by the AUC obtained by varying the threshold level. An AUC of 1 indicates a

perfect prediction, while the chance performance is around an area of 0.5. In

the experiments, we used the implementation of [10].

The drawback of the AUC measure is that it can not account for the center

bias, the tendency of subjects to look at the center of the screen. To compensate

center bias, Zhang et al. [24] proposed a variant of the AUC metric, which is

called shu✏ed AUC (sAUC). The only di↵erence is that negative samples are

taken from fixation points of randomly selected frames rather than random

points from current frame. Here, we used the implementation provided by [47].

The Pearson’s Correlation Coe�cient (CC) considers the saliency map S and

the fixation map H as random variable and calculates the linear relationship be-

tween them using a Gaussian kernel density estimator, as CC(S,H) = cov(S,H)
�S�H

.

While a CC score of 1 indicates a perfect correlation, 0 indicates no correlation

and -1 denotes that they are perfectly negatively correlated.

NSS measure is defined as response value at eye fixation points in an es-

timated saliency map which has been normalized to have zero mean and unit

standard deviation [48], i.e. NSS = 1
n

Pn
i=1

S(xi
H ,yi

H)�µS

�S
where n is the num-

ber of fixation points. While a negative NSS indicates a bad prediction, a

non-negative NSS denotes the correspondence between the saliency map and

the eye fixations is above chance.

4.4. Training and Testing Procedure

In our experiments on CRCNS-ORIG and UCF-Sports datasets, we followed

a 5-fold cross validation setup, where each fold consists of 10 and 30 video

clips, respectively, and we used four sets of videos for training and the rest for

evaluation. We used every single frame during the training of our models on

UCF-Sports, but since the number of frames in the videos of CRCNS dataset is

very large, we instead consider every two frames for training. For the learning-
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based integration schemes, we collect positive and negative samples by using

the ground truth human density maps. In particular, we exclude the boundary

pixels (five pixels away from the borders), and sort the remaining pixels ac-

cording to their ground truth saliency scores. We pick five positive samples by

performing random sampling from the top 20% salient locations and five nega-

tive ones from the bottom 30% salient locations, providing 10 samples for each

frame. All these samples are then represented by the visual features presented

in Section 4.2. This setup gives us approximately 80K feature samples to be

used for training on both datasets. For each dataset and evaluation measure,

we report results averaged over the five folds of cross-validation.

5. Evaluation and Analysis

In this section, we first present a thorough evaluation of the visual features

and analyze their individual prediction accuracies on the benchmark datasets.

Next, we examine the e↵ectiveness of the proposed feature integration strate-

gies by comparing their results against the individual features and the existing

dynamic saliency models.

5.1. Analysis of Individual Visual Features

The features that we investigate in analysis cover a wide range of low-level

and semantic features such as static saliency, motion, faces, humans and text in

the scene. In Table 1, we show the quantitative results of these features on the

CRCNS-ORIG and UCF-Sports datasets.

It is clear from the given results that our deep static saliency feature out-

performs all the other features in all of the reported evaluation metrics. Recent

advances in deep learning allow this static model to learn where humans look

at images in an end-to-end fashion, eliminating the need of hand-crafted fea-

tures. Although this model was trained on a static saliency dataset and lacks

the motion or any other high-level information, our analysis show that it has

the capacity to predict dynamic saliency as well in an e↵ective way.
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Table 1: Quantitative analysis of the individual features.

CRCNS-ORIG UCF-Sports

Features AUC sAUC NSS CC AUC sAUC NSS CC

StaticSaliency 0.884 0.719 1.703 0.327 0.850 0.684 1.818 0.448

Motion 0.739 0.617 0.620 0.109 0.752 0.679 1.272 0.285

Faces 0.715 0.573 0.625 0.107 0.633 0.593 0.704 0.130

Humans 0.666 0.522 0.651 0.126 0.637 0.573 1.214 0.294

Text 0.650 0.524 0.173 0.030 0.667 0.572 0.605 0.126

The second best feature is our proposed motion feature. This is expected as

motion is probably the most important temporal feature in dynamic scenes. Our

analysis illustrates that the correlation between consecutive frames captured by

optical flow is a good indicator to predict the human fixations. Even though it is

highly important, motion feature is not always su�cient by itself. For instance,

the third image to the left in Figure 10 contains a man playing golf. However,

humans focus more on the rolling golf ball instead of the moving golfer.

For faces and text features, we employ the response maps of the recently

proposed deep models [43, 45] apart from the previous work which consider

detection boxes as the individual features. These models give response for the

face or text like regions even if there is no face nor text available in the current

frame. Hence, these deep faces and text features along with the pedestrian

feature can be interpreted as complementary features as their performances are

worse than those of the static saliency and the motion features in both datasets.

To sum up, our experiments demonstrate that deep learning-based static

saliency model provides more accurate predictions than all the other features.

The main reason of its superior performance lies in the end-to-end learning

scheme that it follows. In fact, there are some recent papers that analyze the

capabilities and the drawbacks of deep static saliency models [49, 50, 51]. In [49],

Jetley et al. proposed a new deep model and showed that their deep model gives

responses to not only the image regions having high center-surround contrast,

but also the regions containing faces, bodies and text. In Figure 8, we perform
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a similar analysis to demonstrate the capabilities of our deep static saliency

feature. It is clear from the given results that it gives accurate responses to

some high level features such as faces and text as well. That is being said,

these results also show its drawbacks. As also pointed out by Bruce et al. [50],

deep learning-based models are heavily relied upon the training data. It is

observed that semantic and low-level features can be sometimes in conflict or

in competition in order to gain more attention. However, especially when the

training data is scarce, deep learning based models may not be able to predict

saliency accurately. Bylinski et al. [51] also showed that deep saliency models

need not only to learn to extract high level features, but also to reason about

their relative importance. Moreover, they argued that even in the static setting,

capturing the areas containing actions and movements are important, and the

static models generally fail to give high saliency values to such regions. For

instance, the third row of Figure 8 demonstrates that the static saliency feature

does not predict the human fixations well as it lacks such a module capturing

the areas in motion. Hence, it can be argued that we need some complementary

feature to achieve better performance. With this motivation, in the next section,

we present and discuss the contributions of some high level features along with

the static saliency feature by considering di↵erent feature integration schemes.

5.2. Analysis of Feature Integration Strategies

In our experiments, we compare and contrast our models based on six dif-

ferent feature integration strategies with four dynamic saliency approaches pro-

posed by Hou and Zhang [26], Seo and Milanfar [20], Zhou et al. [28], and

Fang et al. [29]. Figure 9 and 10 show sample frames from the CRCNS-ORIG

and UCF-Sports datasets, respectively, along with the qualitative results of our

models and the existing approaches. For quantitative analysis, in Table 2 and 3,

we provide the scores of four di↵erent metrics for the evaluated models over the

CRCNS-ORIG and UCF-Sports datasets. We additionally include the scores

of deep static saliency model (our best performing individual feature) and the
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Human map Motion Faceness Text Pedestrian Static Saliency

Figure 8: Ground truth fixation maps and the extracted feature heatmaps for motion, faceness,

text, pedestrian, static saliency.

center map as a baseline.

Center bias is a well-known phenomenon in saliency prediction. That is, ob-

servers generally have a tendency to look at the center of images. As illustrated

in Figure 11, CRCNS-ORIG and UCF-Sports datasets also have such a bias,

though the distributions of the ground truth eye fixations on them are slightly

di↵erent. UCF-Sports dataset has a more dominant center bias than CRCNS-

ORIG dataset. As a consequence, our results reported in Tables 2 and 3 show

that by using a center map as a saliency map, we can achieve a fairly good per-

formance. Especially, according to most of the evaluation metrics, it performs

better than most of our individual features. On the other hand, it gives the
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Figure 9: Sample results from CRCNS-ORIG dataset. For each image, we show the original

image with the fixations, the ground truth density map, the results of our feature integra-

tion models, the existing dynamic saliency models and the deep static saliency model for

comparison.

worst performance according to sAUC as this metric is specifically designed to

eliminate the e↵ects of center bias.
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Figure 10: Sample results from UCF-Sports dataset. For each image, we show the original

image with the fixations, the ground truth density map, the results of our feature integra-

tion models, the existing dynamic saliency models and the deep static saliency model for

comparison.

It is clear from the given results that most of our models gives more accu-
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Table 2: Quantitative analysis of the evaluated feature integration strategies on CRCNS-ORIG

dataset.

AUC sAUC NSS CC

Learning-based Models

SVM
0.887 0.721 1.583 0.316

Boosting 0.884 0.707 1.337 0.279

NNLS
0.887 0.723 1.732 0.331

Random Forest
0.887 0.719 1.323 0.277

Transformation-based Models

Mean 0.874 0.710 1.564 0.297

Max 0.865 0.709 1.531 0.287

Existing Models

Seo Milanfar [20] 0.636 0.559 0.263 0.063

Zhou et al. [28] 0.783 0.657 1.046 0.174

Fang et all. [29] 0.820 0.587 1.200 0.220

Hou Zhang [26] 0.808 0.686 1.004 0.176

Static Saliency Feature

Static Saliency 0.884 0.719 1.703 0.327

Baseline Models

Center Map 0.825 0.494 1.326 0.264

Figure 11: Distributions of the eye fixations in CRCNS-ORIG and UCF-Sports datasets and

a sample Gaussian center map that we use as a baseline model.

rate predictions than the individual features in terms of the evaluation metrics,

demonstrating that these features are complementary to each other. We observe

that the static saliency feature that we propose to use for dynamic saliency it-

self gives highly competitive results for the dynamic scenes, especially on the

CRCNS-ORIG dataset. Thus, the performance gain obtained by the feature in-
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Table 3: Quantitative analysis of the evaluated feature integration strategies on UCF-Sports

dataset.

AUC sAUC NSS CC

Learning-based Models

SVM
0.864 0.710 1.719 0.439

Boosting 0.861 0.701 1.533 0.403

NNLS 0.857 0.716 1.888 0.443

Random Forest 0.860 0.699 1.508 0.397

Transformation-based Models

Mean 0.858 0.718 1.926 0.454

Max 0.840 0.703 1.760 0.422

Existing Models

Seo Milanfar [20] 0.806 0.721 1.373 0.314

Zhou et al. [28] 0.817 0.729 1.710 0.365

Fang et al. [29] 0.853 0.700 1.952 0.446

Hou Zhang [26] 0.781 0.694 1.206 0.269

Static Saliency Feature

Static Saliency 0.850 0.684 1.818 0.448

Baseline Models

Center Map 0.813 0.546 1.646 0.399

tegration is not very high compared to the individual performance of the static

saliency feature than those of other features.

In general, our learning-based models provide better results than the trans-

formation based ones. As these models employ human eye fixations as the train-

ing data, they can extract the contextual relations among the individual features

and consequently optimal integration schemes for predicting where humans look

at the dynamic scenes. Particularly, among all of our models, the NNLS model

has a very good generalization capability that it either outperforms or strongly

competes with the other saliency models on both benchmark datasets. It is also

worth mentioning that the transformation-based Max fusion strategy is gener-

ally outperformed by the static saliency feature, demonstrating the drawback of

this integration model. It focuses on the individual feature model providing the
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maximum response at a point, and ignores the responses of all other features.

On the UCF-Sports dataset, among all our models, the transformation-based

Mean fusion model gives the best results in terms of sAUC, NSS and CC scores.

This is interesting as it simply considers all the features equally important and

takes the average of the individual feature responses. This could be mainly be-

cause our learning-based models might have su↵ered from overfitting, and have

provided inaccurate predictions in some of the sequences.

The experiments on CRCNS-ORIG dataset show that our combined models

outperform all the existing models proposed by Hou and Zhang [26], Seo and

Milanfar [20], Zhou et al. [28], and Fang et al. [29] in dynamic saliency prediction.

On UCF-Sports dataset, the model of Zhou et al. [28] has the best performance

according to the sAUC metric. This could be partly because all the videos in

this dataset include a dominant action and hence, the motion contrast feature

can be simple enough to encode saliency by itself. Considering all the evaluation

metrics, the model of Fang et al. [29] beats the others as it considers an adaptive

weighting scheme where the feature weights are updated at each frame according

to the uncertainties in the features. But one can argue that their model has a

strong center bias as pointed out by the low sAUC performance. We also observe

that the existing models perform relatively better on UCF-Sports than CRCNS-

ORIG dataset. We think that the main reason for this is that UCF-Sports is

a less challenging dataset as it is not directly proposed for saliency prediction

problem. Thus, our transformation based models which consider very simple

combination strategies do provide fairly good results on UCF-Sports dataset

as well. However, on the CRCNS dataset, which contains more natural and

more complex scenes, our learning based methods provide the best results on

all metrics. This shows that learning based techniques can better cope with

these challenges.

In Figure 12, we present the sAUC scores of the evaluated models for each

sequence of CRCNS-ORIG dataset in the form of a heatmap, respectively. On

average, i.e. by taking into account the mean of the sAUC scores of the mod-

els, the saccadetest sequence, which contains a circle with high color contrast
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Figure 12: Shu✏ed AUC scores of the evaluated models for each sequence in the CRCNS-

ORIG dataset.

moving over the frames, stands out as the easiest sequence among the 50 se-

quences in the CRCNS-ORIG dataset. All the models which consider static

appearance and dynamic motion features perform quite well on this sequence.

The second easiest sequence in this dataset is the tv-talk05 sequence which

contains two persons having a discussion in a tv show and a related program

caption that doesn’t change over the frames. Again, most of the models predict

where humans look at this sequence, in particular the text and the faces, in

an accurate way. These two sequences clearly demonstrate the importance of

considering di↵erent low and high-level features in dynamic saliency prediction.

Moreover, the worst on average performance is obtained for the standard06

sequence, which includes scenes from a rooftop party and a street view from the

top of a building imaged by a moving camera. The reason of the low perfor-

mance is because it is a very low resolution video and it contains low contrast

frames, which make the humans and the moving objects very hard to detect

through our features.

Similarly, in Figure 13, we provide the heatmap containing the individual

sAUC scores of the models on the UCF-Sports dataset. As mentioned in the

previous section, there are in total 150 action sequences from 13 di↵erent action

types. The best performance is achieved for the Run-Side-012 sequence, which
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Figure 13: Shu✏ed AUC scores of the evaluated models for each sequence in the UCF-Sports

dataset. Sequences are sorted in ascending order of the given video ids.

contains golfer that runs at a slower pace on the grass, making very easy to

distinguish from the surrounding environment by the evaluated models. The

lowest on average performance is obtained for the Golf-Swing-Front-006 se-

quence, which contains a golfer taking a slow swing and a golf ball moving to

the hole. Since the sequence is imaged under a high camera motion, this makes

the moving objects and the humans very di�cult to extract and thus poses a

great challenge for the evaluated models.

Our experimental results also reveal di↵erent characteristics of our models on

UCF-Sports and CRCNS-ORIG datasets. For instance, the performance of the

static saliency feature on UCF-Sports dataset is lower than that on the CRCNS

dataset. On the other hand, motion, facenesss and pedestrian features perform

better on UCF-Sports dataset. Since UCF-Sports is originally an action recog-

nition dataset, the videos it contains are mostly concentrated on actions and

people performing these actions. High-level features are more likely to be salient

and they are easy to be detected by these feature detectors. CRCNS dataset

is, however, a diverse dataset with very low resolution videos, which a↵ect the

performance of motion, facenesss and pedestrian features. As discussed in the

previous subsection, these results also show that the deep learning based static

saliency feature is not very successful in capturing the high-level relations only
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by itself.

To further analyze di↵erent characteristics of CRCNS-ORIG and UCF-Sports

datasets, we conduct some additional experiments with the learning based NNLS

model, which we determined as the most promising integration model amongst

the others, by taking into account di↵erent set of visual features. In Table 4,

we report the results of nine such models. For all these models, we consider

motion as the temporal feature channel and static saliency as the spatial chan-

nel, and enrich them with di↵erent features. One key observation is that the

model that does not consider the static saliency feature (M+F+T+P) gives the

worst performance, which is inline with our results reported in Table 1 stating

that deep static feature outperforms all the other features. For CRCNS-ORIG,

the results of the models that consider static saliency feature are nearly the

same, as the learning-based NNLS scheme gives very high weight values for this

feature and low values for the remaining ones in the feature integration step.

On the other hand, for UCF-Sports, we did not observe such a tendency. For

instance, including text feature into the feature set reduces the performance on

UCF-Sports dataset. Since the images of this dataset does not contain text,

adding this feature might introduce some false positives that NNLS can not

cope with. Including face and pedestrian features into the feature set, however,

improves the performance. Thus, the best result is obtained when the text fea-

ture is excluded (M+F+P+S). To sum up, this experiment demonstrates that

features might contribute very di↵erently that we need to have a mechanism

not only to combine these features but to select the most important ones during

the prediction.

6. Conclusion and Future Work

In this paper, we have evaluated di↵erent feature integration strategies and

accordingly investigated the influence of several low-level and semantic features

in dynamic saliency estimation. Our evaluation and analysis indicate that fea-

ture integration is of utmost important in order to achieve better predictions
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Table 4: Performances of the NNLS feature integration scheme with di↵erent number of visual

features.

CRCNS-ORIG UCF-Sports

AUC sAUC NSS CC AUC sAUC NSS CC

M+S 0.887 0.723 1.721 0.330 0.861 0.705 1.918 0.469

M+F+S 0.887 0.724 1.732 0.331 0.859 0.715 1.918 0.455

M+P+S 0.887 0.722 1.722 0.330 0.863 0.708 1.938 0.474

M+T+S 0.887 0.723 1.721 0.330 0.854 0.704 1.835 0.441

M+F+P+S 0.887 0.723 1.733 0.331 0.861 0.718 1.937 0.460

M+T+P+S 0.887 0.722 1.722 0.330 0.855 0.707 1.855 0.446

M+F+T+P 0.764 0.619 0.853 0.153 0.767 0.677 1.333 0.284

M+F+T+S 0.887 0.724 1.732 0.331 0.855 0.714 1.868 0.438

M+F+T+P+S 0.887 0.723 1.732 0.331 0.857 0.716 1.888 0.443

and regardless of the strategy used, it always improves the results compared

to any single feature. Moreover, we observed that which strategy to choose is

dataset dependent so we can say that finding a better integration scheme is still

an open problem.

The integration strategies that we consider in this study, even the learning

based ones, are all lacking the ability to deal with complex and ever-changing

nature of dynamic scenes in that they all associate constant weights to each

feature dimension. Hence, in future work, we will focus on and investigate the

use of online learning [52] or online adaptation schemes for adaptive feature

integration. Another important future research direction could be investigating

feature integration schemes not just for saliency estimation but also for human

scanpath prediction [53]. Predicting saccadic paths instead of fixation points

could provide a more e↵ective solution for saliency estimation and could be used

within di↵erent application domains such as compression. Scanpath prediction

in dynamic scenes has not been investigated yet.
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