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Abstract. Low-light environments pose significant challenges for image
enhancement methods. To address these challenges, in this work, we in-
troduce the HUE dataset, a comprehensive collection of high-resolution
event and frame sequences captured in diverse and challenging low-light
conditions. Our dataset includes 106 sequences, encompassing indoor,
cityscape, twilight, night, driving, and controlled scenarios, each care-
fully recorded to address various illumination levels and dynamic ranges.
Utilizing a hybrid RGB and event camera setup. we collect a dataset that
combines high-resolution event data with complementary frame data. We
employ both qualitative and quantitative evaluations using no-reference
metrics to assess state-of-the-art low-light enhancement and event-based
image reconstruction methods. Additionally, we evaluate these methods
on a downstream object detection task. Our findings reveal that while
event-based methods perform well in specific metrics, they may produce
false positives in practical applications. This dataset and our compre-
hensive analysis provide valuable insights for future research in low-light
vision and hybrid camera systems.

Keywords: Event-based Vision · Hybrid Camera System · Low-light
Image Enhancement

1 Introduction

The growing interest in event-based vision has led to the development of numer-
ous datasets that capture dynamic scenes with high temporal resolution and a
wide dynamic range. However, existing datasets often come with certain limita-
tions, such as low resolution, limited diversity of scenes, or a lack of challenging
low-light conditions. Given these constraints, our motivation for presenting the
HUE (Hacettepe University Event) dataset is threefold. First, our dataset cap-
tures events at 1280× 720, surpassing the resolution of most available datasets.
High-resolution event data is crucial for accurately capturing fine details in com-
plex scenes, enabling more precise analysis and reconstruction tasks. Second, it
features a substantial collection of sequences shot in diverse settings. Specifically,
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the HUE dataset includes 106 sequences recorded in both indoor and outdoor
environments, using cameras that are either handheld or mounted on a vehi-
cle. These sequences are captured at various times of the day, such as sunset,
twilight, and nighttime, and include a range of camera motions from slow to
fast. The scenes also feature both static and dynamic objects, including peo-
ple, animals, vehicles, buildings, everyday objects, cityscapes, and landscapes.
This variety ensures that the dataset can be used to evaluate a wide array of
methods under different conditions. Third, the HUE dataset specifically targets
challenging low-light scenarios, with sequences captured in conditions where the
illuminance on the event sensor is just a few lux. This focus on low-light en-
vironments addresses a significant gap in current datasets, which often do not
adequately represent such conditions, and is of utmost importance for critical
applications like automotive [35], flight control [38], and robotics [50].

Our dataset is collected using a setup consisting of two cameras: one event
camera and one frame camera. The event sequences, therefore, include comple-
mentary frames as well. We employ a non-coaxial setup where the two cameras
do not share the same optical axis and have different optical characteristics.
Consequently, the event data and frames collected are not pixel-wise spatially
aligned. We share an additional calibration sequence with a flickering chess-
board pattern so that camera calibration procedures can be applied to estimate
intrinsic and extrinsic camera parameters. Non-coaxial datasets like ours offer
the advantage of simpler collection methods, as they do not require additional
equipment such as optical beam splitters or specialized cameras like DAVIS [3].
This generic setup is anticipated to become increasingly popular due to its ease of
integration, such as the multi-camera systems commonly found in smartphones
and robotic systems [43]. Consequently, methods targeting unaligned event and
frame data are being developed as well [7], in contrast to earlier works that make
the limiting assumption of pixel-wise alignment.

Using the low-light scenes from our dataset, we conduct a comprehensive eval-
uation of state-of-the-art low-light image enhancement [5,48,51] and event-based
image reconstruction [9, 45] and enhancement [22] methods, where we qualita-
tively and quantitatively compare and contrast their advantages and shortcom-
ings.

In summary, the main contributions of our work are as follows:

– We introduce the HUE dataset, which offers high-resolution event data and
complementary frame data captured in diverse and challenging low-light
scenarios.

– We provide a comprehensive evaluation of state-of-the-art low-light enhance-
ment and event-based image reconstruction methods using our dataset.

– We highlight the importance of color information in practical applications,
particularly in downstream tasks like object detection.

The rest of the paper is organized as follows: Section 2 discusses related work,
including comparable low-light image enhancement datasets and event-based
vision datasets. Section 3 details our data collection setup and the characteristics
of the HUE dataset. Section 4 presents our experimental evaluation of various
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methods on the dataset. Finally, Section 5 concludes the paper and discusses
future directions. Our dataset, additional calibration sequence, and evaluation
scripts are available at https://ercanburak.github.io/HUE.html.

2 Related Work

2.1 Datasets for Event-Guided Low-light Enhancement

Collecting paired low-light/normal-light RGB and event data is challenging, re-
sulting in very few real-world datasets. Jiang et al . [16] introduced the LIE
dataset, the first real-world dataset designed specifically for this purpose. It in-
cludes event streams and underexposed frames captured in various indoor and
outdoor settings, mostly below 2 lux, using the DAVIS346 event camera for accu-
rate photometric data. The dataset was collected by adjusting the camera’s light
intake in static scenes, triggering events with light changes indoors and different
exposure times outdoors. Liang et al . [22] evaluated their methods on real-world
data using a custom hybrid camera system. This system combines an industrial
camera (FLIR Chameleon 3 Color, 1920×1080 at 20 FPS) and an event camera
(DAVIS346, 346×260) using a beam splitter mounted in front of the two cameras
with 50% optical splitting. The EvLight framework, proposed by Liang et al . [21],
introduces a new dataset with over 30K pairs of spatially and temporally aligned
images and events under various lighting conditions. This dataset was captured
using a robotic arm to ensure precise alignment. The robotic system follows a
predefined path, and the DAVIS346 event camera operates with fixed parame-
ters like exposure time. Initially, paired image and event sequences are captured
under normal lighting conditions. An ND8 filter is then applied to the camera
lens to capture low-light sequences while maintaining consistent camera settings.
There are also event datasets that include night sequences without specifically
targeting the task of event-guided low-light enhancement. However, these suffer
from limitations such as very few night sequences and low resolution [34, 54],
lack of complementary frames [29], or limited diversity of the scenes [12].

Table 1 highlights the advantages of our dataset for event-guided low-light
enhancement compared to existing datasets targeting this task. One key benefit
is our dataset’s much higher resolution, with events captured at 1280× 720 and
frames at 1456 × 1088. This provides more detailed and high-quality data for
both events and frames. In contrast, other datasets, such as those by Jiang et

Table 1: Real-world datasets collected for event-guided low-light enhancement.

Dataset Lux Event Res. Frame Res. Seqs. GT Release Scene Camera

[16] 0.1-5 346\times 260 346\times 260 206 ✓ ✗ Static Static
[21] - 346\times 260 346\times 260 91 ✓ ✓ Static Dynamic
[22] - 346\times 260 1920\times 1280 - ✗ ✗ - -

Ours 0-24 1280\times 720 1456\times 1088 106 ✗ ✓ Dynamic Dynamic

https://ercanburak.github.io/HUE.html
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al . [16] and Liang et al . [21], use much lower resolutions of 346×260 for both
events and frames. Even though Liang et al . [22] achieves a frame resolution of
1920 × 1280, their event resolution is still much lower. Moreover, our dataset
includes dynamic scenes captured with moving cameras, offering a wider range
of real-world applications. This is a significant improvement over other methods
that typically use static scenes or stationary cameras.

2.2 Low-light Enhancement

Enhancing images and videos captured under low-light conditions is a significant
challenge in computer vision. Traditional low-light enhancement techniques have
largely focused on histogram equalization [1,14,30,31] and Retinex theory-based
methods [4, 13, 17, 40, 42] to improve image quality. Recently, deep learning ap-
proaches have provided more robust and adaptive solutions. Additionally, event-
guided methods have further expanded the potential for low-light enhancement
by utilizing the high dynamic range and temporal resolution of event cameras,
overcoming the limitations of conventional frame-based methods.
Low-light image enhancement. The first deep learning-based LLIE method,
LLNet [24], employs a variant of stacked-sparse denoising autoencoder to simul-
taneously brighten and denoise low-light images. Lv et al . [25] introduced an
end-to-end multi-branch enhancement network (MBLLEN) that includes a fea-
ture extraction module, an enhancement module, and a fusion module to extract
effective feature representations. Xu et al . [48] proposed using the signal-to-noise
ratio (SNR) as prior information for enhancing low-light images, employing con-
volutional neural networks (CNNs) to encode local information in high SNR re-
gions and transformers to capture relationships with distant pixels in noisy low
SNR regions. Wu et al . [46] addressed color consistency issues in enhanced dark
images by using a semantic segmentation method to produce and utilize seman-
tic priors, resulting in higher color consistency. Wei et al . [44] combined Retinex
theory with CNNs to develop RetinexNet, which effectively enhances low-light
images. Cai et al . [5] proposed the Retinex-based Illumination-Guided Trans-
former (IGT), which uses illumination representations to guide self-attention
computation and enhance interactions between regions of different exposure lev-
els.
Low-light video enhancement. Chen et al . [6] proposed a siamese network to
ensure generalization capability for processing videos of dynamic scenes. Wang et
al . [41] formulated an end-to-end framework for enhancing underexposed videos,
emphasizing a self-supervised strategy for noise reduction and illumination en-
hancement based on Retinex theory. To enhance moving objects in dark videos,
Haiyang et al . [15] proposed a 3D U-Net-based network to map RAW low-light
videos to normal-light videos. Zhang et al . [51] introduced a method that en-
forces temporal stability in low-light video enhancement by inferring motion
fields from static images and synthesizing short-range video sequences. Fu et
al . [11] addressed camera motion and spatial alignment by proposing a Retinex-
based Light Adjustable Network (LAN) for iterative refinement and adaptive
illumination adjustment.
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Event-guided low-light enhancement. Liu et al . [23] introduced a low-
light video enhancement approach using synthetic event guidance, featuring
an Event and Image Fusion Transform (EIFT) module for event-image fusion
and an Event-Guided Dual Branch (EGDB) module for low-light enhancement,
encompassing event synthesis, event and image fusion, and low-light enhance-
ment. Jiang et al . [16] utilized a residual fusion module to integrate features
from event and frame data, addressing the domain gap with a feature pyramid
structure and multi-level encoder for high-order semantic information extrac-
tion. Liang et al . [22] proposed a novel approach with a multimodal coherence
modeling module to establish coherence between frames and events, and a tem-
poral coherence propagation module for coherence-aware aggregation. The Ev-
Light framework [21] featured an event-guided low-light enhancement approach
with SNR-guided regional feature selection to fuse high-SNR image regions with
events from low-SNR regions, and a holistic-regional fusion branch to integrate
structural and textural information from both events and images.

2.3 Event-based Image Reconstruction

Reconstructing intensity images from event data is a key task in event-based vi-
sion, bridging image and event domains. This allows visualization of events,
application of frame-based methods to event data [28, 32], and making use
of relations between these two domains in contexts like unsupervised domain
adaptation [37, 47, 53]. While earlier works rely on some limiting assumptions
such as known or restricted camera movement, static scenes, or brightness con-
stancy [2,19,20], recent deep learning based methods trained on large synthetic
datasets show impressive results without such assumptions [9, 33, 36, 45]. Zhang
et al . [52] specifically target event data of low-light scenes and propose an unsu-
pervised domain adaptation network to generate intensity images as if captured
in daylight. However, their codes or models are not publicly shared. We use
two recent open-source event-based image reconstruction methods for our ex-
perimental analysis, ET-Net [45] and HyperE2VID [9], which can successfully
reconstruct fine details in dark scenes, where traditional frame cameras suffer
from underexposure or noise. The details of these two methods are presented in
Section 4.

3 Dataset

3.1 Data Collection Setup

Different types of optical setups can be used to collect complementary event and
frame data. One option is to use a camera that integrates both event-based and
frame-based data collection mechanisms within the same pixel array, such as
the Dynamic and Active Pixel Vision Sensor (DAVIS) [3]. This setup provides
synchronized and pixel-wise aligned events and frames. However, it has two sig-
nificant drawbacks: the shutter activity associated with each frame introduces
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Fig. 1: A picture showing our data collection setup containing a PROPHESEE Gen4M
event camera paired with an Allied Vision Alvium compact traditional CMOS camera.

noise into the event data, which is absent in sensors dedicated solely to event
detection, and the most advanced model of this hybrid camera, the DAVIS346,
only supports a maximum resolution of 346 × 260 pixels. The second option
involves using a beam splitter, an optical device featuring a 50/50 mirror that
reflects half of the incoming light and transmits the other half. This arrangement
allows frame and event sensors to share an aligned field of view. Despite its ad-
vantages, this setup requires additional equipment, which incurs extra costs and
occupies more space. The third option, which we have chosen, is a stereo hybrid
event-frame camera setup, where separate event and frame cameras are mounted
side by side. This setup offers simplicity, as it does not require a beam splitter
or a specialized low-resolution camera like the DAVIS. The details of our data
collection setup are presented in the following.

Hardware and Optics Our setup utilizes a PROPHESEE Gen4M event cam-
era [10] and an Allied Vision Alvium compact CMOS camera. The event camera
features a Sony IMX636 event-based sensor, which is in a 1/2.5′′ format with
pixel dimensions of 4.86 µm×4.86 µm. It offers a resolution of 1280×720 and a
dynamic range exceeding 120 dB. The event camera is equipped with a Soyo SFA
0820-5M lens, having a fixed focal length of 8 mm, a maximum aperture of f/2.0,
a minimum focus distance of 0.1 meters, and a horizontal field of view of approx-
imately 38◦. The RGB camera contains a Sony IMX273 global shutter sensor,
which is in a 1/2.9′′ format with pixel dimensions of 3.45 µm× 3.45 µm. It pro-
vides a resolution of 1456×1088, a dynamic range of 75 dB, and a 12-bit analog-
to-digital converter. The RGB camera is paired with a Tamron M118FM06 lens,
having a fixed focal length of 6 mm, a maximum aperture of f/1.4, a minimum
focus distance of 0.1 meters, and a horizontal field of view of approximately 45◦.

The cameras are positioned with a baseline distance of approximately 2 cm
between their optical axes, and their relative positions are kept fixed in an optical
setup. To achieve this, a custom mechanical part designed specifically for the
cameras was produced using a 3D printer. A picture of our setup is presented in
Fig. 1. To capture objects at varying distances in focus, both lenses have been
set to a narrow aperture of f/8, providing a wide depth of field. The focusing
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distances of both lenses were then adjusted to the hyperfocal distance, ensuring
sharp capture of all objects beyond a certain distance, such as 0.5 meters. For
time synchronization, the RGB and event cameras are directly connected using
a dedicated cable, linking one of the general-purpose input/output (GPIO) lines
of the RGB camera to one of the external trigger lines of the event camera. The
software details of time synchronization are described in the following section.

Camera Settings and Software The RGB camera is configured to record at
a frame rate of 25 frames per second, with an exposure time set to minimize mo-
tion blur in dynamic scenes. Specifically, the exposure time is set to a maximum
of 35 milliseconds. The digital gain value of the RGB camera is adjusted based
on the scene’s brightness—higher for dark scenes and lower for bright scenes—to
manage image brightness and noise levels. To avoid excessive noise, we prefer
slightly underexposed images in low-light scenarios. The PROPHESEE Gen4
event sensor has six basic operating parameters: bias_diff, bias_diff_on,
bias_diff_off, bias_hpf, bias_fo, and bias_refr. These parameters con-
trol the sensor’s sensitivity to light intensity changes, the cutoff frequencies of
event filters, and the refractory period of each pixel. Adjusting these settings
affects the sensor’s overall sensitivity, temporal precision, background noise, and
event delay. To maintain a balance among these characteristics, we have decided
to keep the event sensor’s parameters at their factory default settings.

We developed software to complement our hardware setup, running on a com-
puter and communicating with the RGB and event cameras via USB interfaces.
This software configures the cameras, controls data acquisition, and stores the
acquired events and frames. The image frames from the RGB camera and event
streams from the event camera are saved to the computer’s permanent memory.
For time synchronization, the GPIO line of the RGB camera is programmed to
be at a high voltage level (logic 1) during exposure and at a low voltage level
(logic 0) at other times. The event camera continuously monitors the voltage
level on its external trigger line and records the transitions with high temporal
precision. Consequently, the start and end times of each RGB camera frame ex-
posure are timestamped using the event camera’s high-resolution clock, enabling
precise synchronization of data from both cameras. The frames captured by the
RGB camera are saved as 8-bit 3-channel color images. The event camera records
brightness change events, including pixel position, polarity (increase or decrease
in brightness), and a high-precision timestamp. Additionally, the amount of light
falling on the event sensor, measured in lux, is recorded with each frame.

3.2 Collected Dataset

Our dataset includes a diverse array of sequences captured in various challenging
scenarios. Comprising 106 sequences with an average duration of approximately
17 seconds, the dataset totals around 30 minutes of footage. This includes over
44,000 frames and approximately 27 billion events. To manage its size and vari-
ability, we have divided the dataset into six categories based on the scene char-



8 B. Ercan et al.

Table 2: Types of scenes in our HUE Dataset.

Category Seqs. Duration Lux Description

Indoor 23 6 mins 0-3 Indoor environments dimly lit via
natural or artificial light sources.

City 11 4 mins 0-14 Capturing cityscapes through the
window of a mid-rise building.

Twilight 23 10 mins 0-24 Outdoors during twilight, featuring
natural and urban elements.

Night 16 3 mins ∼ 0 Taken in urban environments during
night, with moving people, cars, etc.

Driving 16 6 mins ∼ 0 From the windshield of a car driving
around the city in twilight and night.

Controlled 17 2 mins 0-2 Same scene captured under varying
lighting levels and camera settings.

acteristics. Below, we explain each category in detail, while Table 2 presents an
overview and Fig. 2 displays frames and event visualizations.

HUE-Indoor: This category includes 23 sequences captured in dimly lit in-
door environments, with sensor illuminance levels of just a few lux. This setting
allows the evaluation of methods under low-light conditions within indoor envi-
ronments. 14 of these sequences are lit with natural light filtering through win-
dows, while the remaining sequences are illuminated by artificial light sources.
Approximately one-third of the sequences contain dynamic scenes. While some
sequences are filmed in large indoor halls and corridors featuring distant objects,
most focus on closer subjects. HUE-Indoor is particularly valuable for assessing
image enhancement performance on objects with fine details, such as small text
and textured regions, under low-light conditions.

HUE-City: This category comprises 11 sequences recorded from the window of
a mid-rise building, capturing cityscapes. Seven sequences are recorded during
twilight hours, while two are captured at night. In these sequences, the camera
setup moves slowly, and the scenes are predominantly static, although occasional
moving objects such as vehicles or birds are present. Common elements like
roads and buildings are mostly distant from the camera, with scenes extending
towards the horizon. This setup tests the spatial resolution limits of the event
camera and evaluates each method’s capability to reconstruct fine details, as the
scenes contain many objects and textures represented by just a few pixels on the
sensor. The remaining two sequences are taken during the daytime, capturing
both indoor and outdoor scenes. These sequences test the performance under
high-dynamic range, since the ratio between the illuminance levels of highly lit
and low-lit parts of the scene often varies by orders of tens or hundreds.

HUE-Twilight: This portion of our dataset includes 23 sequences taken out-
doors during the twilight hours of the evening when the sun is below the horizon
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Fig. 2: Sample scenes from different categories of our proposed HUE dataset.

at varying degrees. More specifically, we define twilight hours as the period when
the solar elevation angle (the angle of the sun’s geometric center relative to the
horizon) is between 0 and −12 degrees, encompassing both civil twilight and nau-
tical twilight. The primary source of illumination is sunlight scattering in the
atmosphere, supplemented occasionally by artificial lights such as vehicle head-
lamps and streetlights. The average illuminance on the event sensor is just a few
lux for most of these scenes. Approximately one third of the sequences feature
static scenes, while the remaining majority are dynamic, capturing movement
within the environment. The sequences feature a mix of natural and urban ele-
ments, ranging from lakes and forests to vehicles and buildings.

HUE-Night: This subset contains 16 sequences, all of which are taken in urban
environments during the night, i.e. when the solar elevation angle is below −18
degrees. This leads to significantly darker conditions, with sensor illumination
always being below 1 lux. For these sequences, artificial lights such as street-
lights and vehicle headlamps become the primary source of illumination. Half
of the sequences feature dynamic elements such as moving people and vehicles.
Containing some of the darkest sequences in HUE, this subset is particularly
valuable for assessing performance in very low light conditions.

HUE-Driving: This category includes 16 driving sequences, where the camera
setup is mounted inside of a vehicle’s front windshield, monitoring ahead through
this window. Throughout these recordings, the vehicle travels through various
street settings in twilight and nighttime, capturing elements such as other cars,
pedestrians, motorbikes, parked vehicles, gas stations, tunnels, interchanges, and



10 B. Ercan et al.

roundabouts. This subset is important for evaluating performance in dynamic
scenes and under challenging lighting conditions, such as dark roads and rapidly
moving headlights.

HUE-Controlled: In this category, we present 17 sequences capturing the same
scene, under varying lighting levels and camera settings. More specifically, we
record a toy zebra on a desk indoors from a close distance. The recordings
are made at night, with the only light source being a dimmable halogen lamp,
indirectly illuminating the subject. Throughout these sequences, we adjust the
lamp to produce ten different illuminance levels. We record two sequences for
each of the first seven illuminance levels, by setting two different digital gain
values for the RGB camera. For each of the last three illuminance levels, which
are the darkest, we record a single sequence with a gain value of 48, which is the
maximum allowed by the RGB camera. This category allows us to make more
controlled comparisons under various illuminance levels.

4 Experiments

4.1 Tested Approaches

We evaluate and compare several state-of-the-art methods belonging to four dif-
ferent categories both quantitatively and qualitatively on our HUE dataset: (I)
two RGB image-based methods, RetinexFormer [5] and SNR-Net [48], (II) an
RGB video-based method, namely StableLLVE [51], (III) two event-based image
reconstruction methods, ET-Net [45] and HyperE2VID [9], and (IV) a hybrid
event and RGB video-based method, EvLowLight [22].

RetinexFormer [5] introduces a one-stage Retinex-based Framework (ORF),
revising the traditional Retinex model with perturbation terms for reflectance
and illumination to handle corruptions. ORF estimates illumination to brighten
images and employs a corruption restorer to reduce noise, artifacts, and color dis-
tortions. Additionally, an Illumination-Guided Transformer (IGT) with Illumination-
Guided Multi-head Self-Attention (IG-MSA) models long-range dependencies.
IGT is integrated into ORF, forming the complete RetinexFormer method.

SNR-Net [48] presents an SNR-Aware framework that dynamically adjusts
enhancement based on local signal-to-noise ratio (SNR) estimations. It distin-
guishes between regions with low and high SNR, applying long-range operations
to heavily corrupted areas and short-range operations to clearer regions. It in-
cludes a noise estimation module and an SNR-aware transformer, selectively
using tokens with sufficient SNR to dynamically enhance image quality.

StableLLVE [51] aims to ensure temporal consistency in low-light video en-
hancement using static images. The core idea is to predict motion fields from a
single image to synthesize short-range video sequences, addressing temporal sta-
bility challenges. By using optical flow to simulate motion, this approach applies
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temporal consistency even when training on static images.

ET-Net [45] combines the strengths of CNNs and Transformers in a hybrid
network designed for event-based video reconstruction. It leverages CNNs for
capturing fine-scale local analysis and Transformers for global context modeling.
ET-Net introduces a Token Pyramid Aggregation (TPA) module to integrate
multi-scale token information, enhancing the relation of internal and intersected
semantic concepts. This addresses the limitations of CNNs, particularly in model-
ing long-range dependencies essential for high-quality video reconstruction from
event data.

HyperE2VID [9] introduces a dynamic neural network architecture for event-
based video reconstruction. It utilizes hypernetworks to generate per-pixel adap-
tive filters, informed by a context fusion module that combines data from event
voxel grids and previously reconstructed intensity images. HyperE2VID employs
a recurrent encoder-decoder backbone with dynamic convolutions applied at the
decoder, adapting to spatial variations and enhancing both static and dynamic
parts of the scene.

EvLowLight [22] integrates event data with frame data to enhance low-light
videos. It leverages the unique ability of event cameras to record brightness
changes at extremely high temporal resolution and with a high dynamic range.
EvLowLight features a multimodal coherence modeling module that compen-
sates for differences between events and frames, ensuring accurate alignment
under challenging low-light conditions. A temporal coherence propagation mod-
ule further refines the output by sampling features from corresponding points in
consecutive events and frames, reducing noise and enhancing the signal-to-noise
ratio of the final video output.

4.2 Evaluation Results

All comparison results were generated using the official codes, pre-trained mod-
els, and default parameters provided for each method. In particular, for Retinex-
Former and SNR-Net, we used pre-trained models on the LOL-v1 dataset [44].
StableLLVE was evaluated with the pre-trained model on their custom synthetic
dataset. For ET-Net and HyperE2VID, we utilize official pre-trained models
trained on a synthetic training set as described in [36] and employ EVREAL
evaluation framework [8] to generate reconstructions. EvLowLight was tested
using the model trained on their proposed synthetic dataset.

To quantitatively evaluate the quality of the low-light enhancement and
event-based image reconstruction methods, we used no-reference metrics since
our dataset lacks paired normal-light ground truth images. These metrics provide
perceptual quality scores by directly processing the input images without needing
ground truth references. We employed four no-reference metrics: BRISQUE [26],
NIQE [27], MANIQA [49], and MUSIQ [18]. BRISQUE and NIQE are tradi-
tional metrics that use hand-crafted features to measure adherence to natural
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Table 3: Quantitative results of the methods on no-reference metrics.

Methods NIQE ↓ BRISQUE ↓ MANIQA ↑ MUSIQ ↑
RetinexFormer [5] 4.56 16.34 0.17 24.54
SNR-Net [48] 11.07 58.63 0.18 23.71

StableLLVE [51] 5.52 20.26 0.17 21.04

ET-Net [45] 4.21 25.62 0.31 46.00
HyperE2VID [9] 4.86 21.14 0.28 40.29

EvLowLight [22] 6.26 47.59 0.18 37.78

scene statistics, considering distortions such as blur, noise, and compression.
Conversely, MANIQA and MUSIQ are deep-learning-based methods designed to
assess perceptual image quality end-to-end, specifically focusing on distortions
typically observed in the outputs of neural network-based image restoration al-
gorithms.

Table 3 presents the quantitative results of the evaluated low-light enhance-
ment and event-based image reconstruction methods on our HUE dataset. It is
important to note that these results were obtained without aligning the RGB
data with the event data. Hence, the methods were evaluated on slightly differ-
ent scenes with different resolutions, which may contribute to the variability in
their performance.

In terms of BRISQUE score, RetinexFormer achieves the best results, closely
followed by the event-based image reconstruction method HyperE2VID. For
NIQE, ET-Net leads with the best scores, followed by RetinexFormer, while
SNR-Net records the lowest scores for both BRISQUE and NIQE metrics. When
considering MANIQA and MUSIQ, the event-based image reconstruction meth-
ods ET-Net and HyperE2VID dominate with the highest scores. EvLowLight, a
hybrid event and image method, ranks third in MUSIQ, while it shares the third
position in MANIQA with the RGB image-only method SNR-Net. StableLLVE
shows the lowest score on MUSIQ, and along with RetinexFormer, it has the
lowest scores on MANIQA.

From these results, it is evident that event-based image reconstruction meth-
ods generally outperform others in NIQE, MANIQA and MUSIQ metrics, while
BRISQUE favors RetinexFormer. Grayscale reconstructions produced by event-
based image reconstruction methods are perceived as having less noise and richer
texture, contributing to their higher scores in these metrics. Moreover, EvLow-
Light consistently scores better than other RGB-based methods across metrics
except NIQE and BRISQUE. It should be noted that the no-reference metrics
used were not specifically designed for low-light enhancement tasks, making their
use as direct performance indicators somewhat questionable. These metrics do
not adequately account for color and semantic information in their score assess-
ments.

Fig. 3 presents qualitative results from sample scenes for each subset of our
dataset. The visual results reveal that while ET-Net and HyperE2VID effectively
capture texture and structural information, their reconstructions lack color fi-
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Fig. 3: Qualitative comparison of the low-light enhancement and event-based image
reconstruction methods on sample scenes from different subsets of our HUE dataset.

delity. Additionally, the high noise levels in low-light conditions are evident in the
generated images. EvLowLight demonstrates superior noise reduction compared
to RGB-based image and video methods, yet it struggles to maintain accurate
color representation. This suggests that the inclusion of event information in
EvLowLight significantly aids in noise reduction, resulting in smoother images.
Conversely, image and video-based methods, though richer in color, perform less
effectively in denoising. In conclusion, based on both qualitative and quanti-
tative results, no single method consistently outperforms the others across all
evaluation metrics.

4.3 Analysis on Downstream Task

We conducted further evaluations to assess the effectiveness of each method on
a downstream task: object detection. Specifically, we used the YOLOv7 [39] ob-
ject detector to detect vehicles in the enhanced images produced by low-light
enhancement and event-based image reconstruction methods. Fig. 4 shows ex-
ample results from the object detector. Despite the high scores of event-based
image reconstruction methods on no-reference metrics, qualitative results reveal
that these methods often produce numerous false-positive detections. In con-
trast, methods such as RetinexFormer accurately detected all vehicles in the
scene. These findings demonstrate the importance of color information in down-
stream tasks like object detection. While event-based methods perform well in
certain metrics, they may fall short in practical applications where accurate color
representation is crucial.
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Fig. 4: Object detection performance on input RGB image, low-light enhancement and
event-based image reconstruction methods.

5 Conclusion

In this paper, we introduced the HUE dataset, a comprehensive collection of
high-resolution event and frame sequences captured in a wide range of low-light
conditions. Our dataset is distinguished by its high resolution, diverse scenarios,
and specific focus on challenging low-light environments. It includes sequences
recorded both indoors and outdoors, at various times of day, and with differing
camera motions and scene dynamics, enabling extensive evaluation of low-light
enhancement and event-based image reconstruction methods.

We assessed several state-of-the-art methods across four categories: RGB
image-based, RGB video-based, event-based, and hybrid event-RGB methods.
Our quantitative analysis using no-reference metrics revealed that event-based
image reconstruction methods generally performed well in metrics like NIQE,
MANIQA, and MUSIQ, while RGB-based methods such as RetinexFormer per-
formed best in BRISQUE. However, qualitative evaluations and a downstream
object detection task emphasized the importance of accurate color information,
with RGB-based methods showing superior performance in detecting objects
without false positives.

These findings highlight the necessity of considering both quantitative met-
rics and practical application outcomes when evaluating low-light enhancement
techniques. While event-based methods are powerful in certain metrics, they may
require further refinement for tasks involving color fidelity and object detection.
Conversely, hybrid methods like EvLowLight show the potential benefits of in-
tegrating event data to reduce noise and improve image smoothness. The HUE
dataset, coupled with our detailed evaluations, provides a valuable resource for
advancing research in low-light vision and hybrid camera systems. We anticipate
that our dataset and findings will inspire future research in this field, ultimately
leading to more robust and versatile low-light imaging solutions.
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