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Gražina Korvel grazina.korvel@mif.vu.lt

Vilnius University, Vilnius, Lithuania

Abstract

Developing artificial learning systems that can understand and generate natural lan-
guage has been one of the long-standing goals of artificial intelligence. Recent decades have
witnessed an impressive progress on both of these problems, giving rise to a new family of
approaches. Especially, the advances in deep learning over the past couple of years have
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led to neural approaches to natural language generation (NLG). These methods combine
generative language learning techniques with neural-networks based frameworks. With a
wide range of applications in natural language processing, neural NLG (NNLG) is a new
and fast growing field of research. In this state-of-the-art report, we investigate the recent
developments and applications of NNLG in its full extent from a multidimensional view,
covering critical perspectives such as multimodality, multilinguality, controllability and
learning strategies. We summarize the fundamental building blocks of NNLG approaches
from these aspects and provide detailed reviews of commonly used preprocessing steps and
basic neural architectures. This report also focuses on the seminal applications of these
NNLG models such as machine translation, description generation, automatic speech recog-
nition, abstractive summarization, text simplification, question answering and generation,
and dialogue generation. Finally, we conclude with a thorough discussion of the described
frameworks by pointing out some open research directions.
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The State of the Art in Neural Natural Language Generation

1. Introduction

Humans communicate and express information through natural language. Research within
Artificial Intelligence, in particular Natural Language Processing (NLP), is concerned with
the automatic analysis, representation and generation of human language. Generation of
language is the focus of the subfield of Natural Language Generation (NLG).

Generation is at the heart of human-machine interfaces. Examples of tasks that fa-
cilitate this are dialogue systems, question answering, machine translation, summarization
and image captioning. Traditionally, NLG has been approached as a pipeline of several
stages (Reiter & Dale, 2000), involving (i) macroplanning – deciding “what to say?”, (ii)
microplanning – choosing the appropriate structures and vocabulary, and (iii) surface real-
ization – determining the final output, or “how to say it?”, given the information provided
in the previous stages. While early work on language generation relied on linguistic pat-
terns which had been defined a priori, the field has witnessed a revolution in the past few
years. The development and evaluation of statistical models based on neural architectures
—Neural Natural Language Generation (NNLG) —has shifted the research focus away from
knowledge-based approaches motivated by linguistic theories, which predominated in the
90s (Bateman & Zock, 2003). The increasing number of neural approaches for NLG has
been also reported and make evident in the recent NLG surveys, e.g., (Gatt & Krahmer,
2018; Iqbal & Qureshi, 2020), further detailed in Section 2).

In parallel, another development has been the exponential increase in information, both
in terms of volume, and in terms of type, format, language, etc. This has increased the
importance of multilinguality and multimodality in recent NLG approaches. Two further
developments which have an impact on NLG are learning strategies and controllability.
These four dimensions—multilinguality, multimodality, learning strategies, controllability—
are important in the context of NNLG to maximize its potential. Tasks such as Machine
Translation, Question Generation, and Abstractive Summarization, among others, are ex-
amples of applications in which these dimensions can play a crucial role, both individually
and in tandem. Therefore, the objective of this survey is to provide the reader with an
overview of recent advances in NNLG from a multidimensional perspective, focusing on the
most recent neural approaches. In this survey, both aspects—dimensions and tasks—are
discussed in detail, demonstrating their implementation in NNLG tasks and applications.

To provide the reader with a general overview of the state of the art in NNLG, the rest
of the paper is structured as follows: We first provide a brief list of the most recent surveys
related to different aspects of NLG with an emphasis on neural approaches, together with
the main scope of the present survey (Sections 2 and 3). In Section 4, we present the four
main dimensions in which NNLG can be studied. In Section 5, we describe the fundamen-
tal building blocks, including common preprocessing steps, and basic neural architectures.
After that, in Section 6, we investigate all major language- and speech-related NNLG ap-
plications widely studied in the community. In particular, we provide an in-depth review of
seven popular tasks, namely machine translation, description generation,1 automatic speech
recognition, abstractive summarization, text simplification, question answering/generation,

1. Throughout this manuscript, the terms “image captioning” and “description generation” will be used
interchangeably.
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and dialogue generation. Finally, we give concluding remarks in Section 7 where we outline
some open research directions.

2. Related Surveys

A number of recent survey papers related to different aspects of NLG can be found in
the literature. These aspects include a focus on multimodality by integrating vision and
language, for instance, and diverse language generation tasks, such as machine translation,
description generation or abstractive summarization. In this section, we conduct a brief
analysis of the most recent surveys (i.e., published in the period 2016-2020) that deal with
any aspect that has some impact on language generation. Our goal in this Section is to
clarify what has been reported so far, tackling NLG from a different angle from what we
would like to report in our proposed NNLG survey.

General purpose NLG surveys. A general perspective together with the fundamentals
and evolution of NLG is provided in (Gatt & Krahmer, 2018) and (Santhanam & Shaikh,
2019). Gatt and Krahmer (2018) mainly focus on data-driven approaches, and Santhanam
and Shaikh (2019) on specific NLG tasks and applications, such as open domain dialogue
systems. Recently, Iqbal and Qureshi (2020) propose another survey where the focus is on
deep learning models that can be applied to NLG, extending the aforementioned work of
Gatt and Krahmer (2018) and concluding that generative adversarial networks (GANs) seem
to dominate NLG when working with images, whereas variational auto-encoders (VAEs)
are predominantly used with texts. The evaluation of NLG systems is also an important
aspect and was surveyed in (Celikyilmaz, Clark, & Gao, 2020) and (van der Lee, Gatt, van
Miltenburg, & Krahmer, 2021), with the latter focusing primarily on human evaluation.

Undoubtedly, in line with the trend in other fields of Artificial Intelligence, neural models
are currently the dominant technique used in NLG, which has witnessed a gradual shift from
traditional, rule-based approaches, to statistical, data-driven ones (Gatt & Krahmer, 2018).
Moreover, NLG is a very broad area and we note that despite in-depth treatments of several
topics in previous surveys many important subareas were either left out or were not the
main focus. Important dimensions such as multilinguality, multimodality, controllability and
learning strategies are important in the context of NLG to maximize its potential. Tasks
such as Machine Translation, Question Generation, Abstractive Summarization, among
others, can be also considered a form of text production. Thus, a survey is warranted which
covers the most recent trends and focusses on these dimensions and tasks.

Surveys on dimensions relevant to NLG. Ruder (2017) provides an overview of the
state of multi-task learning with deep neural networks, finding that one of its weaknesses is
its limited generalization capabilities. Belinkov and Glass (2019) review analysis methods
in the context of neural networks. Among their main conclusions, we highlight two which
are directly related to the aim of this survey: (i) the lack of methods and resources in lan-
guages other than English (and therefore the need to develop them); and (ii) the need for
more challenge sets for evaluating tasks other than natural language inference and machine
translation. Regarding multilinguality, Ruder, Vulić, and Søgaard (2019) surveys cross-
lingual word embeddings due to their usefulness in building a common representation space
that enables model transfer between languages. Baltrusaitis, Ahuja, and Morency (2019)
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addresses multimodality in the context of machine learning approaches, whereas Wiriy-
athammabhum, Summers-Stay, Fermüller, and Aloimonos (2016), Mogadala, Kalimuthu,
and Klakow (2021) focus more on how the different modalities in a system’s input (e.g.
images, videos, text) can be integrated. Regardless of whether the main focus is on the
input side or the algorithmic one, the important aspect in these surveys is how to process
and relate information from multiple modalities.

NLG Tasks Surveys. Among surveys that deal with specific NLP tasks that generates
language as output and therefore can be considered NLG applications, Dabre, Chu, and
Kunchukuttan (2020) review multilingual neural machine translation approaches. The sur-
vey concludes that more human evaluation of these models is necessary to have a better
understanding of the impact of multilingualism. Sulubacak, Caglayan, Grönroos, Rouhe,
Elliott, Specia, and Tiedemann (2020) analyze multimodality in machine translation, ad-
vocating the need for bigger and more challenging multimodal datasets in both the input
and output space, as well as targeted evaluations to better compare model performance.
Concerning abstractive summarization, there are also several surveys that provide the basic
background about this type of NLG task (Aries, Zegour, & Hidouci, 2019; Baumel & El-
hadad, 2019; Gupta & Gupta, 2019; Lin & Ng, 2019). Specifically, Lin and Ng (2019) and
Baumel and Elhadad (2019) analyze neural network models for abstractive summarisation,
especially in view of the fact that such models provide a viable framework for obtaining an
abstract representation of the meaning of an input text and generating informative, fluent,
and humanlike summaries. However, there is no survey that analyzes abstractive summa-
rization with respect to the multilinguality or multimodality dimensions, as has been done
for machine translation.

Research addressing tasks that include video or images as input and produce text as
output can be considered multimodal by definition. These works mainly focus on video or
image description/captioning and surveys such the ones in (Aafaq, Mian, Liu, Gilani, &
Shah, 2020; Hrga & Ivašić-Kos, 2019; He & Deng, 2017; Bernardi, Cakici, Elliott, Erdem,
Erdem, Ikizler-Cinbis, Keller, Muscat, & Plank, 2016) provide a good starting point to
understand these tasks. According to existing surveys (Aafaq et al., 2020), research on
video description is far from mature at present. This is partly due to the fact that the
analysis of video description models is a very challenging task, and existing evaluation
metrics fall short of measuring the agreement between machine-generated descriptions with
those of humans. Regarding image captioning or description generation, current systems
are limited in the diversity of output they generate, with a tendency to reproduce what
appears in the training data. Furthermore, they still do not robustly infer the underlying
semantics of images to generate novel descriptions. Another research line for future work
in the context of description generation is to investigate multilingual approaches. Visual
Question Generation is another task that has recently gained traction. Here, a model takes
an image as input and generates meaningful questions based on that input image. Patil and
Patwardhan (2020) review the state-of-the-art for this task, with an overview of the main
techniques, datasets and evaluation metrics.
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3. Scope of the present survey

There is no shortage of surveys on language generation, but to the best of our knowledge
none of the existing surveys explore language generation from a multidimensional perspec-
tive. That is, they do not fully address issues related to the type of input, output language
or architectures used, and do not cover broad range of applications that directly or in-
directly involve language generation at their core, specifically when one is interested in
the recent neural network based approaches. While the recent survey by Jin, Cao, Wang,
Xing, and Wan (2020), Garbacea and Mei (2020) cover some aspects of neural NLG, mainly
models and metrics but also some tasks, it does not pay attention to the multidimensional
perspectives mentioned in Section 1.

With the present survey, we aim to provide a broader understanding and an overall
perspective of the most recent advances in neural language generation from different angles.
In this manner, this survey takes into account both the relevant dimensions for differ-
ent language generation tasks, as well as a set of representative applications. We include
five different dimensions in our analysis, all of which are further described in Section 4:
multilinguality (Section 4.1), multimodality (Section 4.2), learning strategies (Section 4.3),
controllability (Section 4.4). We then introduce fundamental preprocessing steps and the
general neural architectures (Section 5), hence an advanced reader may skip this section.
The specific tasks we survey are the following2: Machine Translation (Section 6.1), Descrip-
tion Generation (Section 6.2), Automatic Speech Recognition (Section 6.3), Abstractive
Summarization (Section 6.4), Text Simplification (Section 6.5), Question Answering and
Generation (Section 6.6), and Dialogue Generation (Section 6.7).

4. Neural Natural Language Generation

This survey studies methods to perform Natural Language Generation (NLG) using neural
methods, with a special focus on multiple dimensions, as introduced in Section 13. We con-
sider neural NLG methods from the perspectives of multiple languages, multiple modalities,
and in view of multiple application tasks.

NLG is an NLP task that comes with aims and in flavors that are as diverse as human
life, people’s interactions and the languages they speak. Put abstractly and from a bird’s
eye view, the essence of NLG is that information encoded in inputs stemming from a single
or multiple modalities – may it be text, speech, images, videos, etc. – is mapped by a system
to a single or multiple outputs in natural language in textual form. The mapping performed
by the system, and the choice of methods that ensure high-quality NLG output crucially
depend on the chosen input and the targeted output languages or language varieties, but
most importantly will have to realize a task-specific mapping from the inputs to natural
language outputs. Performing a specific task for a given input and a desired output may
require specific methods to obtain optimal results. Hence, we consider the specific kind of
mapping that has to be performed to solve a specific NLG task as an important dimension
for designing suitable neural NLG methods. Clearly, such mappings can come in many

2. See https://github.com/Multi3Generation/neural-natural-language-generation for the list of of-
ficial implementations of the papers (if any) reviewed in our survey.

3. In this survey, we are focusing on the main dimensions and tasks of the Multi3Generation COST Action
(https://multi3generation.eu).
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Figure 1: Multi3NLG: NLG from a multilingual, multimodal and multi-task perspective.

varieties: we may want to translate content delivered by textual or spoken input – ideally
1:1 – to the chosen output language; we may want to summarize important pieces of content
from the input and convey it in a short, abstracted manner (as in text summarization) or
by describing prominent information captured in an image in NL sentences, etc.

Hence, for the purpose of this survey, we define the NLG task from three perspectives (cf.
Figure 1), in form of the targeted (input or output) languages, different types of modalities
of the input, and the desired application tasks, as follows:

NLG is the task of mapping content encoded in a given input – originating
from a single or various modalities – to NL output in a chosen language,
by translating, summarizing, simplifying, or otherwise modifying the input, or
by describing or explaining the input, asking or answering questions about or
reacting to it, in performing a specific application task. When solving such
task-specific mappings, NLG methods apply a variety of learning and control
strategies to achieve optimal results.

How does this definition apply to multiple languages, modalities and tasks addressed in this
survey?

(M)Modality. The input to a NLG system may originate from different modalities,
such as text, speech, or images. While these constitute unstructured inputs, we may also
consider structured inputs, as in data2text generation where a system may be tasked to
answer a user’s question in NL on the basis of a structured knowledge graph or database, or
where a system must verbalize information contained in a table (as in financial or weather
reports) or in a structured meaning representation (e.g., in AMR2Text generation).4

4. We do not consider data2text variants of NLG in this survey although it is covered by the above definition.
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(M)Language. Crucial for our definition of NLG is that a system’s output is always
natural language in textual form.5 However, the generated output6 may be chosen from
manifold languages, including varieties such as dialects, or linguistic styles or genres.

(M)Task. The core function of NLG is to map a given input to a textual output in NL.
This function crucially depends on the chosen NLG task, as well as the chosen input and
output variables. For any such task, it is crucial that the generated output conforms to
the task’s specific mapping function. The spectrum of such mapping functions is large, and
may continue to grow in the future. It ranges from translating (1:1) between languages,
over summarizing relevant pieces of content of a text, simplifying its language or varying
its language style, or may consist in triggering situation-adapted conversational turns. All
these different mapping functions may be applied in mono- or multilingual settings, with
single or multiple modalities, e.g., with or without grounding language in vision and speech.
Performing NLG from spoken language inputs has its own challenges, tackled in ASR7,
but may also be combined with translation or summarization; also, performing NLG in
combination with visual inputs covers various functions based on the content encoded in
them: visual inputs may be described or explained using NL, and they may serve as a basis
for generating questions or answers about them, by combining vision and language inputs.

Multi3NLG. Hence, the nature of the various kinds of mappings that NLG needs to
perform is crucially determined by the task at hand, in interaction with the chosen input
and output dimensions. Given the manifold combinations, research needs to develop suitable
methods of learning and controlling NLG, to ensure optimal results.

4.1 Multilinguality

Multilinguality in NLP refers to the problem of processing more than one language. In Nat-
ural Language Generation in particular, multilinguality refers to the problem of automatic
generation of texts in multiple languages. The exact definition of multilinguality in NLP
and NLG depends however on the way an architecture deals with multiple languages.8

Traditional NLG architectures that focused on this aspect distinguish between weak and
strong multilinguality (Bateman & Licheng, 1999). A system is said to exhibit “weak”
multilinguality if it consists of different generators for each language, each with its own
algorithms and data structures. Thus, even though the final NLG system addresses several
languages, the individual components are only aware of one of the languages at a time. In
contrast, “strong” multilinguality is a term used for systems in which a single generator
applies to all of the languages to be covered by the multilingual system.

5. Hence, our definition does not consider speech synthesis as a NLG task.
6. and equally the input, for that matter
7. Converting spoken language to text can be problematic. ASR produces raw word sequences without

punctuation and capitalization. Furthermore, the information present in speech such as intonation,
hesitation, etc. is reduced by converting speech into text.

8. In the early multilingual NLP literature, the term multilingual was used in the meaning of independent
evaluation on multiple languages, i.e., a single system was trained independently on many languages
(without sharing) and it was typically evaluated on each language individually. In recent years, mul-
tilingual typically refers to a single system trained jointly on many languages. To distinguish this
terminological confusion, the term polyglot learning was proposed (Mulcaire, Kasai, & Smith, 2019) to
refer to training a single model on data from multiple languages. Albeit the term polyglot is not widely
used, most multilingual models today are essentially polyglot-trained systems.
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Two of the advantages of strong multilinguality identified by Bateman and Licheng
(1999) are modularity and generalizability, i.e., having a clear separation of process (gener-
ation) and data (linguistic description), where the generation process must from the outset
be designed to be adequate for handling a variety of language specifications, thus making
it more likely to support general solutions. In the last decades, the NLP research com-
munity has developed a wide range of algorithms, methods and applications for addressing
multilinguality. The predominant approaches rely on statistical methods (Bikel & Zitouni,
2012) and the creation of machine learning models able to understand and process different
languages.

A cornerstone of recent multilingual models is multilingual word representations, that
is, embeddings of words in two or more languages in a single, high-dimensional space, as
further discussed in Section 4.3.1.

However, some concerns have been raised regarding the limitations and deficiencies of
multilingual models for NLG tasks and their effectiveness for minority languages (Rönnqvist,
Kanerva, Salakoski, & Ginter, 2019; Pires, Schlinger, & Garrette, 2019).

4.2 Multimodality

Multimodal research is already an established sub-field of machine learning, but (to the
best of our knowledge) still lacks a rigorous definition of modality.

Baltrusaitis et al. (2019) propose a taxonomy of approaches to multimodal learning,
using as their starting point a perceptual, human-centered view of modality, as follows:
“Our experience of the world is multimodal - we see objects, hear sounds, feel texture,
smell odors, and taste flavors. Modality refers to the way in which something happens or
is experienced”. The downside of this definition arises because machines are sensing the
world very differently compared to humans: While we can read and comprehend both text
(e.g. in a text file) and an image of text, a machine has to be programmed very differently
if it has to generate text as a response to ASCII-based input, rather than images capturing
the same text.

An alternative definition is the machine-centered view. Guo, Wang, and Wang (2019)
formulate it as follows: “In the representation learning area, the word “modality” refers to a
particular way or mechanism of encoding information.” Similarly, Bernsen (2008) state: “a
modality is defined by its physical medium and its particular “way” of representation.” The
upside of this definition consists in capturing the case where modalities could be represented
differently but bear the same information; a case in which machines would not automatically
notice the content overlap. But this focus on representation might miss crucial aspects of
multimodality in machine learning, since e.g. PNG or JPEG are different encodings of
the same image, but not different modalities. Conversely, an infrared image is usually
represented as a PNG like an usual image, but delivers different information entirely.

While both human-centered and machine-centered definitions have pros and cons, for
the scope of this paper, we will rely on the perceptual, human-centered view. This view
better captures the motivation for multimodal learning, in that it draws attention to the
complementarity of information reaching us via multiple channels, and it is the combination
of these channels that is the primary goal of multimodal learning.
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The fact that information may be present in complementary modalities raises challenges
for multimodal NLG. Firstly, models should focus on multiple multimodal inputs, otherwise
they miss information present in one but missing in the other. Secondly, the relationship
between the two modalities need not be symmetrical from the generation perspective. For
example in image captioning, there are multiple textual descriptions for the same image;
conversely, there are many images realizing the same textual input.

4.3 Learning Strategies

This section provides an overview of the main learning strategies. As it turns out, multi-task
learning is a very popular learning strategy across the tasks surveyed here. We refer the
reader to the details in the task-specific sections (Section 6) as they differ per application.
In the following subsections (4.3.1 and 4.3.2), we outline important learning strategies in
the context of multilingual and multimodal modeling, respectively.

4.3.1 Multilingual Learning Strategies

Learning strategies for neural multilingual models differ largely in the way they use multi-
lingual information. Early work on learning static cross-lingual word representations
takes different assumptions in data sources and algorithms, and is surveyed in (Ruder et al.,
2019). This includes the type of alignment (alignment at the word level, the sentence or
the document level), and the comparability of the sources (whether exact translations as
parallel data is required, or comparable data is sufficient). Algorithms are broadly classified
into mapping-based and joint approaches, which differ in whether first monolingual repre-
sentations are learned and then mapped to a multilingual space, or a multilingual space is
directly learned (jointly on all languages). The authors point out that “the data a method
requires to learn to align a cross-lingual representation space—is more important for the
final model performance than the actual underlying architecture”. Some recent examples of
such multilingual representations include LASER embeddings9 (Schwenk & Douze, 2017) or
Multilingual USE embeddings10 (Yang, Cer, Ahmad, Guo, Law, Constant, Abrego, Yuan,
Tar, hsuan Sung, Strope, & Kurzweil, 2020), covering 93 and 16 languages, respectively.

In recent years, the advent of contextualized multilingual word representations
has significantly pushed the field with seminal architectures like ELMo (Peters, Neumann,
Iyyer, Gardner, Clark, Lee, & Zettlemoyer, 2018) and BERT (Devlin, Chang, Lee, &
Toutanova, 2019) first proposed for monolingual learning. The latter, BERT, uses multi-
task learning by optimizing two objectives—masked language-modeling and next-sentence
prediction—while learning on large quantities of raw text. Multilingual variants like multi-
lingual BERT (mBERT) (Devlin et al., 2019) and XLM-R (Conneau, Khandelwal, Goyal,
Chaudhary, Wenzek, Guzmán, Grave, Ott, Zettlemoyer, & Stoyanov, 2020) were soon after
proposed, obtained by training on data from multiple languages jointly. In contrast to early
research on static word embeddings, the focus has shifted to algorithms, as many architec-
tures emerged. What they have in common is that these models enabled scaling to much
larger quantities of data, yielding strong cross-lingual representations even without explicit
cross-lingual supervision signal (like alignment of data). The use of language tags became

9. https://github.com/facebookresearch/LASER
10. https://aihub.cloud.google.com/p/products%2F4e63f320-d774-4772-aaaa-ccbe8f3f09f2
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ubiquitous when training (or applying) such models, to indicate the language trained on (or
asked to generate). This shift to contextualized models resulted in surprisingly effective mul-
tilingual models. Recent multilingual models like mBERT11 and XLM-R12 (Conneau et al.,
2020) support 104 and 100 languages, respectively. There exist models that can generate
texts (instead of only predicting masked tokens or their variants). These generative multi-
lingual language models include GPT2-ML13, mT5 (Xue, Constant, Roberts, Kale, Al-Rfou,
Siddhant, Barua, & Raffel, 2021) and mBART (Liu, Gu, Goyal, Li, Edunov, Ghazvininejad,
Lewis, & Zettlemoyer, 2020), which were pre-trained on very large corpora from Common
Crawl-based data—the CCNet Corpus (Wenzek, Lachaux, Conneau, Chaudhary, Guzmán,
Joulin, & Grave, 2020). mT5 and mBART support 101 and 25 different languages, respec-
tively. Multilingual models can generalize across languages without supervision (zero-shot
evaluation).

Problems. While multilingual models have without doubt brought significant advances
for enabling NLP for many languages, the main issue currently is that multilingual models
are not universal. For instance, mBERT covers only 104 languages, which is a third of
the languages found in Wikipedia (Hedderich, Lange, Adel, Strötgen, & Klakow, 2021).
Moreover, languages are not represented equally well in multilingual models: multilingual
BERT works well for high-resource languages, but it is much worse on low-resource lan-
guages (Wu & Dredze, 2020). State-of-the-art multilingual models rely on a vocabulary
based on subword units inferred from all data, which favors frequent subwords and thereby
is more favorable to higher-resource languages. Recent work includes work on improving
the vocabulary of multlingual models, for example by using language-clustered vocabular-
ies (Chung, Garrette, Tan, & Riesa, 2020). This targets the balance of general subword
sharing versus modeling language-specific information, and is one step towards improving
such models for low-resource languages. Training data scarcity and balancing of data are
further factors that challenge current models (Lauscher, Ravishankar, Vulić, & Glavaš, 2020;
Conneau et al., 2020).

4.3.2 Multimodal Learning Strategies

We distinguish between two multimodal scenarios:

Multimodal input. When working with inputs from at least two different modalities
(e.g. text and images in Multimodal MT, speech and gestures in speech recognition), it is
common practice for one input modality to be used to ground the other input modality.
In vision and language learning, for example, we can use the image to visually ground the
language modality (as in Phrase Grounding, Multimodal MT, or Visual Dialogue), or vice
versa: we can use language to textually ground the image (as in sentence-image retrieval).
After grounding, the modalities have to be fused or aligned implicitly before producing the
output of the downstream task, so that downstream applications are able to recover and
further process information from each modality.

Among the first statistical approaches for multimodal fusion were algorithms based
on CCA (Hotelling, 1992), which are applied on previously extracted image and textual

11. https://github.com/google-research/bert/blob/master/multilingual.md
12. https://github.com/facebookresearch/XLM
13. https://github.com/imcaspar/gpt2-ml
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features14. More elaborate, neural multimodal methods combine well-established unimodal
architectures (CNN for images, LSTM for text) as branches of a unified multimodal model
(see Section 5 for a thorough review of fundemantal architectures in NLG). The unimodal
sub-branches are usually fused by concatenation (Kiela & Bottou, 2014; Regneri, Rohrbach,
Wetzel, Thater, Schiele, & Pinkal, 2013; Shekhar, Takmaz, Fernández, & Bernardi, 2019).
or element-wise vector multiplication (Fukui, Park, Yang, Rohrbach, Darrell, & Rohrbach,
2016; Wang, Li, Huang, & Lazebnik, 2018), outer product (Fukui et al., 2016) or attention
(Yu, Yu, Cui, Tao, & Tian, 2019). Other approaches map the resulting representations
of the unimodal branches into a common space, by enforcing a rank-distance loss (Wang
et al., 2018), training the model to keep representations of objects that are shared in both
modalities close to each other in the joint space.

The fusion is typically followed by a task-specific head that provides the loss for the mul-
timodal model. The advantages of embedding purely/full-fledged unimodal model compo-
nents within the multimodal system architecture is that in this way, weights that are learnt
from unimodal tasks (like image recognition or language modelling) can be transferred and
further adapted within the multimodal architecture on specific multimodal tasks.

For Vision and Language tasks, the current state-of-the-art relies on multimodal Trans-
former architectures that come in two flavours: single-stream models such as VideoBERT
(Sun, Myers, Vondrick, Murphy, & Schmid, 2019), VL-BERT (Su, Zhu, Cao, Li, Lu, Wei, &
Dai, 2019), Unicoder-VL (Li, Duan, Fang, Gong, Jiang, & Zhou, 2020), or UNITER (Chen,
Li, Yu, Kholy, Ahmed, Gan, Cheng, & Liu, 2020) employ a single Transformer for the visual
and textual modalities. The two-stream architecture, as used by e.g., ViLBERT (Lu, Batra,
Parikh, & Lee, 2019) or LXMERT (Tan & Bansal, 2019) combines two unimodal Transform-
ers with a third Transformer that performs cross-modal fusion. Some recent work suggests
that single and two-stream models can be unified in a common framework (Bugliarello,
Cotterell, Okazaki, & Elliott, 2021).

In both types of architectures, the learning of visual-linguistic representations happens
through different stages that employ transfer learning and multi-task learning strategies:
First, often the textual branch is initialised with the weights of BERT (Devlin et al., 2019).
Furthermore, the visual feature vectors are extracted by a visual backbone15 which is already
pre-trained on image recognition tasks. Secondly, a self-supervised multimodal and multi-
task pre-training stage learns generic multimodal representations on tasks including multi-
modal masked language modelling, masked visual feature classification, or image-sentence
alignment. Thirdly, the pre-trained model is further fine-tuned on a downstream task, such
as image retrieval, phrase grounding, or VQA – in some cases again in a multi-task fash-
ion. (Lu, Goswami, Rohrbach, Parikh, & Lee, 2020) show that multi-task learning over 12
different vision and language tasks can improve the performance on individual downstream
tasks.

Translating between Modalities. In cases where we translate or transform input in one
modality to output in another modality, the task and model qualify as multimodal according
to our definition (cf. 4.2). Typical tasks are for instance image or video captioning, speech

14. See for example (Sargin, Yemez, Erzin, & Tekalp, 2007; Plummer, Wang, Cervantes, Caicedo, Hocken-
maier, & Lazebnik, 2015; Massiceti, Dokania, Siddharth, & Torr, 2018)

15. For example, Faster-RCNN (Ren, He, Girshick, & Sun, 2015b), or MaskRCNN (He, Gkioxari, Dollár, &
Girshick, 2017)
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recognition, or image generation from text. The learning strategies generally employ a
unimodal encoder for the input modality, and a unimodal decoder for the output. For
example, image captioning might be performed using a a CNN encoder and LSTM decoder
(Bernardi et al., 2016; Tanti, Gatt, & Camilleri, 2018). Text-to-image generation can be
peformed using a GAN conditioned on the CNN-RNN text encoding of the textual modality
(Reed, Akata, Mohan, Tenka, Schiele, & Lee, 2016).

Problems. The main issues found with multimodal architectures are currently that they
tend to ignore one modality and instead focus on the other, despite their training objec-
tives (Shekhar et al., 2019; Caglayan, Madhyastha, Specia, & Barrault, 2019; Cao, Gan,
Cheng, Yu, Chen, & Liu, 2020; Agarwal, Bui, Lee, Konstas, & Rieser, 2020). The reasons
are twofold: Firstly, datasets often contain statistical biases, so that tasks that require in-
formation from both modalities with equal importance become solvable by models which
exploit data biases in a single modality to make predictions (Goyal, Khot, Summers-Stay,
Batra, & Parikh, 2017; Massiceti et al., 2018; Agarwal et al., 2020). Secondly, the hetero-
geneity of modalities becomes a problem (Collell & Moens, 2018): The finite amounts of
training data employed are usually enough for a successful data-point mapping from one
modality into the other, showing high accuracies on the training set and on test data of a
very similar distribution. However, the finite samples are not enough for a successful trans-
lation of the whole modality space into another modality space. Neural networks are only
stretching/contracting high-dimensional spaces. If the input and output multimodal spaces
are poorly sampled (relative to the complexity of the problem of translating one modality
into the other), the finite sampling leads to degenerate neighbourhoods of the fitted data
points during training (Collell & Moens, 2018), causing poor generalisation during testing
and deployment.

4.4 Controllability

Controllability in Natural Language Generation tasks is mechanisms to generate natural
sentences whose features can be defined a priori. The main problems in controlled language
generation models range from the difficulty of generating text according to the given at-
tributes, to the lack of diversity of the generated texts. The attributes to control features
range from style such sentiment, formality, etc.; content such as information, keywords, en-
tities, etc.; structure like ordering of information, events, like plot summaries (Prabhumoye,
Black, & Salakhutdinov, 2020; Wiseman, Shieber, & Rush, 2018).

The state-of-the-art Language Models are trained with unsupervised learning. On the
one hand, unsupervised learning allows to process a huge amount of training data, on the
other hand, these data and output text of current task can have different structure, other
features. In order to use the pre-trained Language Model to solve a specific text genera-
tion problem, it is necessary to have effective mechanisms to affected on the output text.
Controllability of various attributes provides solutions for manifold NLG tasks. For in-
stance, such as Machine Translation Crego, Kim, Klein, Rebollo, Yang, Senellart, Akhanov,
Brunelle, Coquard, Deng, et al. (2016), Hokamp and Liu (2017), Susanto, Chollampatt,
and Tan (2020), Description Generation Alikhani, Sharma, Li, Soricut, and Stone (2020),
Question Answering and Generation, Abstractive Summarization Fan, Grangier, and Auli
(2018), Text Simplification Maddela, Alva-Manchego, and Xu (2021), Dialogue Genera-
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tion, Story Generation Chandu, Prabhumoye, Salakhutdinov, and Black (2019). Improved
controllability of language generation is achieved through conditional training and explicit
control hyper-parameters and additional input. Prabhumoye et al. (2020) discusses three
abstraction levels of language generation to make machines generated text human-like. It
regards structure, content and style.

Different type of source data are considered for controlled text generation, such as tables
(Parikh, Wang, Gehrmann, Faruqui, Dhingra, Yang, & Das, 2020), structured data records
(Nan, Radev, Zhang, Rau, Sivaprasad, Hsieh, Tang, Vyas, Verma, Krishna, Liu, Irwanto,
Pan, Rahman, Zaidi, Mutuma, Tarabar, Gupta, Yu, Tan, Lin, Xiong, Socher, & Rajani,
2021), trees or graphs (Zhao, Walker, & Chaturvedi, 2020; Lin & Wan, 2021).

Structure of generated text directly depends on NLG tasks. It affects e.g. the length
(Kikuchi, Neubig, Sasano, Takamura, & Okumura, 2016), and the relationship between
sentences. Bridging between the semantic representation of story structure and the NLG
engine discussed in (Rishes, Lukin, Elson, & Walker, 2013). In example, Orbach and Gold-
berg (2020) consider expanding a sequence of facts into a longer narrative. Wiseman et al.
(2018) provide template-like structures. In BART, Lewis, Liu, Goyal, Ghazvininejad, Mo-
hamed, Levy, Stoyanov, and Zettlemoyer (2020) propose an autoregressive decoder, which
fine tuned for sequence generation tasks such as abstractive question answering and sum-
marization. Su, Vandyke, Wang, Fang, and Collier (2021) propose a Plan-then-Generate
(PlanGen) framework which consists of two components, namely a content planner and a
sequence generator.

Content refers to the information conveyed by the generated text. Text generation tasks
focused on generation based on structured input (for example, semantic representation) or
free-form text (instructed data). There are various approaches to generating content. First
group of approaches are based on control codes, e.g. (Keskar, McCann, Varshney, Xiong,
& Socher, 2019; Dathathri, Madotto, Lan, Hung, Frank, Molino, Yosinski, & Liu, 2020;
Krause, Gotmare, McCann, Keskar, Joty, Socher, & Rajani, 2020) Second line of works
are based on conditioned language models, in which the generated text is conditioned on
a context vector (Xia, Zhang, Nguyen, Zhang, & Yu, 2020a). Next group of approaches
explore combining variational auto-encoders and input attributes, different types of content
attributes (Shu, Papangelis, Wang, Tur, Xu, Feizollahi, Liu, & Molino, 2020; Hu, Yang,
Liang, Salakhutdinov, & Xing, 2017; Shu et al., 2020; Bi, Li, Wu, Yan, Wang, Huang,
Huang, & Si, 2020). Finally, the last group of approaches utilize planners for structure
generation, e.g. (Zhao et al., 2020; Su et al., 2021). Special mention should be made of
(Lin & Wan, 2021), which provides ways to improve diversity of generated texts.

Style of generated text is used for wide range of language generated subtasks. Style is
usually understood to refer to features of lexis, grammar and semantics. The controlling
style can affect of domain-specific dictionaries, sentiment, representation of emotions, per-
sonalization. Dathathri et al. (2020) provide a means for controlling topic and sentiment
by attributes. Wiseman et al. (2018) consider two question separately “what to say” and
“how to say”, in which the latter is related to the style of generation. Lastly, Shu et al.
(2020) propose controlling style attributes (linguistic register, readability, and many others)
by the codebooks.

Concerning the implementation of controllability, there are three main approaches:
Control via hyperparameter. Language models trained through self-supervision gen-
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eralize knowledge from huge amount of texts. These texts can contain unequal (shifted)
distribution of training data. In recent research discussed demographic groups, gender and
racial biases (Sheng, Chang, Natarajan, & Peng, 2019). Controllable NLG by hyperpa-
rameters avoids this issues. Bias metrics and correlated human judgments, and empirical
evidence discussed in (Sheng, Chang, Natarajan, & Peng, 2020). The method BTmPG (Lin
& Wan, 2021) provided study how the hyper-parameter λ influences semantic guidance to
paraphrase model. The GeDi (Krause et al., 2020) is used combination of hyper-parameters
for sentiment, detoxification, and topic control generation. Control via additional in-
put. This methods based on fine tuning models with extra inputs, such as tables, content
for question answering tasks, question, history of dialog. The control code e.g. {Education,
Cars, Climate} is used in GeDi (Krause et al., 2020) and CTRL Keskar et al. (2019). Meta-
data from tables is used as additional input in ToTTo (Parikh et al., 2020) for table-to-text
generation. Attributes are used in PPLM (Dathathri et al., 2020) for controlling style and
sentiment. The hierarchical input is used in DART (Nan et al., 2021) for two controllable
properties, namely size and shape. Additional input to regular VAE is used in (Shu et al.,
2020) for controlling style of text. Tree or graph as input is used in Zhao et al. (2020).
Conditional training refers to the group of training methods that employ a discrete con-
trol variable to enrich the models with specific capabilities. For instance, approaches use
non-autoregressive models to reduce the complexity of enforcing constraints at decoding
time and include either soft or hard constraints during training. More details can be found
in Section 6.1.

5. Fundamentals

5.1 Preprocessing

As for any machine-learning based task, a fundamental first step is to preprocess the input to
derive a machine-readable input representation. The type of preprocessing required depends
on the form the input takes, which in turn depends on the LG task at hand. A number of
LG tasks, such as Machine Translation and Summarisation take language as their primary
input. Over the past few years, a number of preprocessing techniques for text have emerged
as a result of the turn to neural approaches.

Preprocessing of linguistic inputs primarily involves segmentation into sequences of ba-
sic processing units. Determining these basic processing unit typically involves sentence
segmentation, tokenization (determining what a (sub)word is), and vocabulary formation.
Commonly used choices for units are words, characters, or subword units extracted by
methods such as WordPiece (Schuster & Nakajima, 2012), Byte-Pair Encodings (Sennrich
& Haddow, 2016) and SentencePiece (Kudo & Richardson, 2018). Subword-like units have
become increasingly popular since 2016, where they provided an elegant solution to the
problem of out-of-vocabulary words, while providing a more space efficient vocabulary and
allowing for open-vocabulary generation. Tokenization has been shown to affect model per-
formance across different evaluation metrics as in Byte-Pair Encodings (Sennrich & Haddow,
2016) and SentencePiece (Kudo & Richardson, 2018) where subword-level tokenization per-
forms better then word-level tokenization for Machine Translation tasks. Other techniques
commonly used in the literature for preprocessing include stop-word elimination, stemming
and normalization.
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Commonly used techniques for preprocessing linguistic units of words involves represent-
ing words as one-hot encoded vectors where tokens in the input sequence are transformed to
binary valued vectors where each token in the input is mapped to a vector through binariza-
tion as 1 indicating existence of the token in the vocabulary, 0 indicating the non-existence
of tokens, resulting with with a vector of vocabulary size. Additionally, another strategy
that is used in the literature is utilizing a learnable embedding matrix, accomplished by
using one-hot encoding followed by matrix multiplication operations. Another common ap-
proach used in the literature for preprocessing input sequences consists of using a pre-trained
neural network for extracting embeddings from this network as a preprocessing step. In par-
ticular linguistic tokens are processed with a pre-trained network where networks such as
word2vec (Mikolov, Sutskever, Chen, Corrado, & Dean, 2013), GloVe (Pennington, Socher,
& Manning, 2014), fastText (Bojanowski, Grave, Joulin, & Mikolov, 2017), ELMo (Peters
et al., 2018) are commonly used as a feature extractor for input tokens.

Using pre-trained networks for pre-processing other input modalities are common in
the literature, e.g. pre-processing visual tokens using pretrained CNNs such as Faster-
RCNN (Ren et al., 2015b), or ResNet (He, Zhang, Ren, & Sun, 2016) is quite common in
the literature where visual tokens are then converted to fixed sized embeddings of these
networks. In a similar fashion, raw audio input is commonly preprocessed using a set of
approaches. In particular, audio modality typically consists of thousands of samples per
second, hence a spectogram representation is preferred which removes the phase informa-
tion, as it is not informative. The spectogram is used to represent signal activity at different
frequencies as a function of time. The frequency content is computed over frames where the
length of frame determines the granularity of the spectral details. Each frame is then pro-
cessed using a Mel-scale filterbank and the logarithm of filter outputs are used to compute
log Mel-scale filterbank features providing compression that allows normalization to volume
variations by an additive term. Common techniques used to further process the log Mel-
scale filterbank features involves processing audio tokens via CNNs to extract embeddings
for the input tokens, such as using VGGSound (Chen, Xie, Vedaldi, & Zisserman, 2020) or
other pre-trained networks to embed audio tokens to fixed sized feature vectors.

5.2 Models

Recurrent Architectures. The family of Recurrent Neural Networks (RNNs) (Elman,
1990) shown encouraging performance in various NLP tasks such as language modeling and
machine translation, and commonly used for NLG tasks typically by generating text in an
autoregressive manner. One reason for their widespread adoption is their ease of use in
various usage patterns, such as acceptors, encoders, or transducers (Goldberg, Hirst, Liu,
& Zhang, 2018). In particular, RNNs are widely used for conditional generation using the
encoder-decoder architecture where an RNN is used to encode inputs on the encoder side
into a fixed-size vector representation, and another RNN is used to generate outputs on
the decoder side, hence converting the (fixed-size) latent space representation into output
tokens. The wide adoption of RNNs in the encoder-decoder architecture is also closely
related to the success of RNNs in sequence-to-sequence tasks, i.e. a special case of the
encoder-decoder architecture where input and output are modelled sequentially. One par-
ticular example of a sequence-to-sequence architecture is machine translation, where RNNs
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are commonly used to encode a sequence of words in a source language and to decode a
translation as a sequence of words in a target language (Sutskever, Vinyals, & Le, 2014;
Bahdanau, Cho, & Bengio, 2015; Sennrich, Haddow, & Birch, 2016b) (See Sec.6.1). Another
selling point of RNNs is their ability to encode variable-length input sequences into a fixed-
length vector embedding including the ability of RNNs to adequately handle long-range
dependencies in textual data.

The simplest form of an RNN can then be formulated as follows. For an input sequence
w = (w1, w2...wi), an RNN updates its hidden states h = (h1, h2...hi) for each time step
and the last state hi represents the entire input sentence. The tokens in the input sequence
are first converted to one-hot vectors which are later transformed into continuous word
representations xi using a word embedding matrix, which is jointly trained with the network.
Then, the RNN’s hidden state is updated as follows;

hi = f(wi, hi−1) (1)

In Equation 1, f is the function that changes according to the RNN type. The hidden
state of the current time-step is dependent on all of the previous hidden states. The initial
hidden state h0 is usually the zero vector ~0. Alternatively, the initial hidden state can be
learned based on the task, e.g in sequence generation tasks, typically the initial state is set
as the final hidden state of the encoder.

Long Short Term Memory (LSTM) (Hochreiter & Schmidhuber, 1997) networks were
proposed to address the constraints of RNNs caused by vanishing gradients (the exploding
gradients problem is not directly addressed with LSTMs and typically alleviated by clipping
the gradients at a certain threshold). LSTMs are able to model long-range dependencies
using separate hidden and memory cells in the hidden layer, which are capable of storing
information for longer time-steps. Each hidden layer contains 3 gates: an input gate it
which transforms the current input to update the cell, an output gate ot which controls
how much of the cell state to expose in the next hidden state, and a forget gate ft which
controls how much of the information in the previous cell state to forget. In Equation 2,
� stands for element-wise multiplication; σ is the sigmoid activation function, b is the bias
term, W and U are learnable parameters.

it = σ
(
W (i)wt + U (i)ht−1 + b(i)

)
ft = σ

(
W (f)wt + U (f)ht−1 + b(f)

)
ot = σ

(
W (o)wt + U (o)ht−1 + b(o)

)
ut = σ

(
W (u)wt + U (t)ht−1 + b(t)

)
ct = it � ut + ft � ct−1

ht = ot � tanh (ct)

(2)

Gated Recurrent Unit (GRU) (Cho, van Merriënboer, Bahdanau, & Bengio, 2014a) was
proposed to transform each recurrent unit to adaptively capture dependencies of different
time scales and can be regarded as a simplification of LSTM and its gating mechanism. The
gating mechanism in GRU allows flow of information inside the unit without having separate
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memory cells. At each time step of the GRU, the activation ht is a linear interpolation
between the previous activation ht−1 and the candidate activation h̃t, modulated by an
update gate zt which controls how much the unit updates its activation, or content and a
reset gate rt which allows to forget the previously computed state when off. In Equation 3,
� stands for element-wise multiplication; σ is the sigmoid activation function, tanh is the
hyperbolic tangent function, b is the bias term, W and U are parameter matrices.

rt = σ
(
W (r)wt + U (r)ht−1 + b(r)

)
zt = σ

(
W (z)wt + U (z)ht−1 + b(z)

)
h̃t = tanh

(
W (h̃)wt + rt �

(
U (h̃)ht−1

)
+ b(h̃)

)
ht = (1− zt)ht−1 + zth̃t

(3)

Attention-based Architectures. RNNs show promising results in sequence-to-sequence
tasks, but if the length of the input sequence is large, RNNs often fail to generate a good
fixed-sized representation of the input, i.e., summary vector. Experiments using variable-
length inputs have shown that the performance of the model dramatically decreases with
the increase of the sentence length (Cho et al., 2014a). To overcome this problem and
to increase the effectiveness of neural machine translation models, Bahdanau et al. (2015)
proposed an attention mechanism to be used in encoder-decoder architectures. The idea
behind the attention approach is to represent each token with a vector referred to as an
annotation vector rather than representing whole sentence with a single vector. Annotation
vectors are later combined into a context vector c which is calculated in each time step.
This strategy assists the decoder in attending to different parts of the input sequence while
generating different portions of the target sequence.

cj =
N∑
i=1

aijhi, (4)

eij = align(hi, zj−1), (5)

αij =
exp(eij)
L∑

j=1
exp(eij)

(6)

To generate the j-th target token, a context vector cj is computed as shown in Equation 4
where N corresponds to the input sequence length, aij is the attention weight, and hi, zj
are annotation vectors for encoder and decoder, respectively. Alignment scores eij can be
obtained by the alignment function, which aims to capture the relation between annotation
vector hi in the encoder and the previous hidden state of the decoder zj−1. Attention
weights αij are calculated with the softmax function which converts alignment scores into
probabilities (Equation 6), where L corresponding to the target sequence length.

Soft attention mechanisms scan the entire input sequence when generating the output
sequence. There are other attention mechanisms proposed in the literature such as mono-
tonic attention for online tasks where the decoder RNN scans chunks of encoder states to
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generate output sequences (Chiu & Raffel, 2018; Arivazhagan, Cherry, Macherey, Chiu,
Yavuz, Pang, Li, & Raffel, 2019; Merboldt, Zeyer, Schlüter, & Ney, 2019). Recent ad-
vances in using attention mechanisms have brought a fully attention-based architecture
(i.e., non-recurrent) called the Transformer (Vaswani, Shazeer, Parmar, Uszkoreit, Jones,
Gomez, Kaiser, & Polosukhin, 2017) which achieved the state-of-the-art performance in
many NLG tasks (see Section 6 for a broad overview).Transformer models employ encoder-
decoder architectures where both encoder and decoder includes multiple stacked layers.
The encoder consists of two parts: a multi-headed attention mechanism and a fully con-
nected feed-forward layer. The decoder also has the same sub-layers as the encoder and
additionally, there is a separate multi-headed attention layer which attends to the encoder
representations. Transformers are the first neural architecture to be completely based on
self-attention. The self-attention mechanism captures dependencies between input tokens
in the sequence by interacting each token directly with each other token in the sequence.
In addition to the self attention mechanism, some Transformer based models also utilize a
cross attention mechanism in which tasks involve attending multi modal data on the input
side such as VQA or multi modal machine translation, and vision and language grounding
problems e.g. (Liu et al., 2019a; Tsai et al., 2019). Because of these “skip-connections”
across time, Transformers are often better at handling long-range dependencies (Vaswani
et al., 2017). The self-attention mechanism uses a dot-product as an alignment function,
which uses transformations of an input X ∈ RT×d into query Q, key K, and value V , where
T(·) denotes sequence length and d(·) denotes feature dimension. This attention mechanism
executes in a multi-headed manner. First, inputs are projected into keys, queries, values,
and then the attention function is applied (Equation 7).

Attention(Q,K, V ) = softmax

(
QK>√

d

)
V. (7)

In practice, the Transformer architecture uses multiple attention mechanisms as de-
scribed in Equation 7 at each time-step, i.e., multi-headed attention. At the end, the
output of each attention head is summed to calculate the final context vector C.

C =
h∑

i=1

Attention
(
QWQ

i ,KW
K
i , V W

V
i

)
WO

i , (8)

where W matrices are trainable parameters, and h is number of self-attention heads and
WQ ∈ Rdo×dk ,WK ∈ Rdo×dk and W V ∈ Rdo×dv .

The Transformer architecture does not employ any recurrent or convolutional layers.
Therefore, in order to encode the location of tokens in a sequence, the Transformer uses
a “positional encoding” which is applied to both input and output sequences. For the
positional encoding function, the authors used sine and cosine functions inspired by Fourier
series as shown in Equation 9 where p is the position, d is the embedding dimension and i
is the model’s dimension. The authors also experimented with learned and fixed positional
encoding which yields similar results.

PE(p,2i) = sin
(
p/100002i/d

)
,

PE(p,2i+1) = cos
(
p/100002i/d

)
.

(9)
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In recent years Transformer-based neural architectures are commonly used as a pre-
training scheme for language modeling tasks. In particular, popular architectures such as
BERT (Bidirectional Encoder Representations from Transformers) (Devlin et al., 2019) use
pre-training for downstream language generation tasks. BERT uses pretraining on unla-
beled text for extracting deep bidirectional representations by jointly conditioning on both
left and right context and is trained using masked language modeling and next sentence
prediction. It has become the state-of-the-art in several NLU tasks. Fine-tuning pretrained
models like BERT for downstream tasks has become a popular approach in NLP (Xia et al.,
2020b). Another transformer based model such as GPT (Generative Pre-Training) (Rad-
ford & Narasimhan, 2018) and its variants also utilizes pretraining for both NLG and NLU
tasks with generative pre-training of a language model on a diverse corpus of unlabeled
text.

The Unified pre-trained Language Model (UniLM) (Dong et al., 2019) architecture inte-
grates multiple language modeling strategies into a joint framework, i.e. it involves standard
unidirectional language modelling loss coupled with both a bidirectional and a sequence-to-
sequence language modeling task. The combination of different language model objectives
makes its learning strategy special, allowing UniLM to achieve high performances for both
natural language understanding and natural language generation tasks – including abstrac-
tive summarization – as well. BART (Lewis et al., 2020) model formulation also offers
a modification to BERT by giving a special emphasis towards natural text generation as
well. BART combines a bidirectional encoder over corrupted texts and an autoregressive
decoder. The model is trained by first perturbing the input sequences with some noising
function (e.g. token deletion and masking), then trying to reconstruct the original text in
a sequence-to-sequence manner. Multilingual extensions to BERT based models have been
proposed in the literature such as mBART (Liu et al., 2020) and mT5 (Xue et al., 2021).

6. Neural Natural Language Generation Tasks and Applications

6.1 Machine Translation

In machine translation, a model is tasked with generating translations in a target language
for sentences given in a source language. Let X = (x1, · · · , xM ) be a sentence of length M
in a source language LS and Y = (y1, · · · , yN ) be its translation of length N into a target
language LT . In multimodal machine translation (MMT), a model generates a translation
Y given not just X but more additional context: an image I that illustrates both X and Y .

Different neural network models for machine translation (NMT) were proposed by
Kalchbrenner and Blunsom (2013), Cho, van Merriënboer, Gulcehre, Bahdanau, Bougares,
Schwenk, and Bengio (2014b), Cho et al. (2014a), Sutskever et al. (2014) more or less con-
comitantly. These models follow an encoder–decoder architecture, i.e. an encoder converts
a source sentence X into a fixed-size dense hidden vector, and a decoder generates a trans-
lation Y by conditioning on this hidden vector. The use of this fixed-size bottleneck has
fallen out of use and was replaced by attention mechanisms, which improved NMT models
especially when translating longer sequences (Bahdanau et al., 2015; Luong, Pham, & Man-
ning, 2015). In very simple terms, an attention mechanism directly connects each source
word hidden state to the decoder at each time step (see Equations 4–6). Moreover, in the
industry Google’s adoption of NMT (Wu, Schuster, Chen, Le, Norouzi, Macherey, Krikun,
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Figure 2: Illustration of an encoder-decoder architecture with attention (Luong et al., 2015).

Cao, Gao, Macherey, et al., 2016) was an indicator that neural networks were overtaking
the MT field not only in research labs but also in commercial applications. Uptake of
NMT is also evident at the institutional and government level. For example, the European
Union’s Directorate General for Translation (DGT) began to integrate neural MT technol-
ogy in its computer-aided translation systems in 2018 (DGT, 2018). In Figure 2 we show
an encoder-decoder architecture with attention as proposed in (Luong et al., 2015).

Multimodality. In MMT, the image is expected to be important to visually ground the
model, and an important catalyst to research in this subarea of MT were the three WMT
multimodal translation shared tasks (Specia, Frank, Sima’an, & Elliott, 2016; Elliott, Frank,
Barrault, Bougares, & Specia, 2017; Barrault, Bougares, Specia, Lala, Elliott, & Frank,
2018).

The provision of annotated data is an important challenge in MMT. Such data can be
expensive to produce. In the most common formulation of the task, training data needs to
take the form of triples (X, I, Y ). This is necessary since most models for MMT are fully
supervised and trained using maximum likelihood estimation. Furthermore, models usually
assume that both X and I are available at inference time.

In more sophisticated models, some or all of these assumptions can be relinquished. In
zero-shot and/or unsupervised MMT the core idea is to alleviate the need for anno-
tated triplets and rely instead on disjoint sets of images and captions in two languages, i.e.
(X, I) and (Y, I) (Nakayama & Nishida, 2017; Chen, Liu, & Li, 2018; Su, Fan, Bach, Kuo,
& Huang, 2019). However, these models usually perform worse than their fully-supervised
counterparts. Zhang, Chen, Wang, Utiyama, Sumita, Li, and Zhao (2020b) propose to
train a sentence–image retrieval model using (X, I) pairs, and use it to augment standard
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MT training data consisting of pairs (X,Y ), with images, yielding (X,Y, I). This allows
for the inclusion of images into standard MT pipelines. Zhang et al. (2020b) showed small
but consistent improvements compared to fully-supervised Transformer models across lan-
guage pairs and on large data regimes. Another research line investigates latent-variable
models for MMT, where the important idea is to better encode the semantics of source
sentences using the image (Toyama, Misono, Suzuki, Nakayama, & Matsuo, 2016), and to
learn visually grounded models that can translate without images at inference time (Calixto,
Rios, & Aziz, 2019). In domain-targeted MMT, models are tailored to address common
issues in e-commerce and e-fashion areas, such as noisy user-generated content (Calixto,
Stein, Matusov, Castilho, & Way, 2017a; Calixto, Stein, Matusov, Lohar, Castilho, & Way,
2017b; Zhou, Cheng, Lee, & Yu, 2018; Laenen & Moens, 2019). An important research line
investigates the image contribution to MMT, i.e. in which settings images actually help
improve translations in MMT models, and also the impact adversarial examples have on
multimodal MT (Elliott, 2018; Caglayan et al., 2019; Calixto & Liu, 2019; Dutta Chowd-
hury & Elliott, 2019). Initial investigations on using images as context in simultaneous
machine translation have shown promising results, though experiments are still very pre-
liminary (Imankulova, Kaneko, Hirasawa, & Komachi, 2020; Caglayan, Ive, Haralampieva,
Madhyastha, Barrault, & Specia, 2020). Lala and Specia (2018) proposed a translation
quality metric specific for MMT named multimodal lexical translation to try to better
estimate the impact of images in visually grounding translations. Finally, in video-based
MMT models are trained to translate subtitles in the context of videos. Raunak, Choe, Lu,
Xu, and Metze (2019) and Wu, Ive, Wang, Madhyastha, and Specia (2019) use the How2
dataset (Sanabria, Caglayan, Palaskar, Elliott, Barrault, Specia, & Metze, 2018) to train
video-based MMT models and report favourable results. Sigurdsson, Alayrac, Nematzadeh,
Smaira, Malinowski, Carreira, Blunsom, and Zisserman (2020) recently approached unsu-
pervised word translation using video, a different task but somewhat related to MMT.

Multilinguality. Multilingual machine translation models are proposed in cases where
the same model is used to translate either from more than one source language (i.e., many-
to-one), into more than one target language (i.e., one-to-many), or both (i.e., many-to-
many). Many-to-one models can directly include multiple source languages by training
one separate encoder for each language (Zoph & Knight, 2016), and can also ensemble
existing standard NMT models trained for each different source language together (Garmash
& Monz, 2016). One main downside of such models is the fact they require multiple source
languages to be available at both training and test time, though alternatives without these
requirements exist (Firat, Sankaran, Al-onaizan, Yarman Vural, & Cho, 2016b; Nishimura,
Sudoh, Neubig, & Nakamura, 2020). A related topic involves using additional features
available for the source language and/or tasks to improve translation, e.g. dependency
parses for the source language (Luong, Le, Sutskever, Vinyals, & Kaiser, 2016; Sennrich
& Haddow, 2016; Currey & Heafield, 2019). When translating from one source into many
target languages, one-to-many models improved translations by simply adding a decoder
for each target language (Dong, Wu, He, Yu, & Wang, 2015) and selectively sharing decoder
weights between languages (Wang, Zhang, Zhai, Xu, & Zong, 2018). Many-to-many
models translate from multiple source languages into multiple target languages. Firat,
Cho, and Bengio (2016a) and Lu, Keung, Ladhak, Bhardwaj, Zhang, and Sun (2018) use a
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shared attention between per-language encoder-decoder networks to achieve many-to-many
translation, however the number of parameters grows linearly with the number of languages.
This can be alleviated by using a single shared encoder-decoder network to translate between
all languages (and a shared vocabulary), which is possible with the use of special language
tokens to signal to the model which language to translate from/into (Johnson, Schuster, Le,
Krikun, Wu, Chen, Thorat, Viégas, Wattenberg, Corrado, Hughes, & Dean, 2017; Aharoni,
Johnson, & Firat, 2019; Freitag & Firat, 2020). The use of this special language token is
the current state-of-the-art approach when using multilingual translation models.

Learning strategies. A few promising research directions in neural machine translation
worth mentioning include non-autoregressive, simultaneous, unsupervised, and latent vari-
able MT. Non-autoregressive models can make MT models much faster, simultaneous MT
investigates using MT models in real-time, unsupervised models can increase the applica-
bility of MT into hundreds of languages with at least some monolingual corpora, and latent
variable models can acquire knowledge and structural relationships in complex datasets.

Non-autoregressive models do away with the autoregressive factorization of the
translation probability log p(yt|x1:M , y<t) and instead model the generation of each word or
token in parallel log p(yk|x1:M ). Important points in many of the proposed non-autoregressive
translation (NAT) models include (i) modelling fertility (Della Pietra, Epstein, Roukos, &
Ward, 1997) (i.e., how many target words a source word “generates”); (ii) a knowledge
distillation training phase where an autoregressive model is used to teach the NAT model,
which can still be used in parallel at inference time; (iii) the notion of iterative refinements
of the translations, so that a first model iteration computes log p(yk|x1:M ), and further
iterations refine the previous predictions log p(yk|x1:M , ŷ1:N ) (Gu, Bradbury, Xiong, Li, &
Socher, 2018; Libovický & Helcl, 2018; Kaiser, Bengio, Roy, Vaswani, Parmar, Uszkoreit,
& Shazeer, 2018; Lee, Mansimov, & Cho, 2018; Zhou, Gu, & Neubig, 2020). Recently, (Gu
& Kong, 2021) further reduce the gap between fully NAT models, models that do iterative
refinement, and autoregressive translation models. Simultaneous MT models are design
to be used in real-time translation scenarios, e.g. continuously translating utterances as the
speaker is talking. Simultaneous MT models must balance latency and translation quality,
and many methods have been proposed lately to improve models on both latency and qual-
ity dimensions (Ma, Huang, Xiong, Zheng, Liu, Zheng, Zhang, He, Liu, Li, Wu, & Wang,
2019; Arivazhagan et al., 2019; Ma, Pino, Cross, Puzon, & Gu, 2020; Zhang, Zhang, He,
Wu, & Wang, 2020a). Unsupervised MT models do not assume that parallel training
sentences (X,Y) are available. These methods build on unsupervised techniques to induce
cross-lingual word embeddings, and leverage denoising auto-encoders, generative adversarial
networks (Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, & Ben-
gio, 2014), dual learning (He, Xia, Qin, Wang, Yu, Liu, & Ma, 2016), and back-translation
(Sennrich, Haddow, & Birch, 2016a; Edunov, Ott, Auli, & Grangier, 2018) to achieve fully
or almost fully unsupervised MT (Artetxe, Labaka, Agirre, & Cho, 2018; Lample, Con-
neau, Denoyer, & Ranzato, 2018; Marie, Wang, Fujita, Utiyama, & Sumita, 2018; Artetxe,
Labaka, & Agirre, 2019; Ren, Zhang, Liu, Zhou, & Ma, 2019; Yang, Chen, Wang, & Xu,
2018). (Garcia, Foret, Sellam, & Parikh, 2020) proposes a method to train multilingual
unsupervised MT models, and (Kim, Graca, & Ney, 2020) investigate the limitations of
unsupervised MT and find that models still fail to translate properly, especially in cases
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where languages LS and LT are very dissimilar and there is a domain mismatch between the
different monolingual corpora used in the model. Finally, latent variable MT models
introduce one or more continuous latent variables to capture notions such as model uncer-
tainty and semantic consistency and interaction between source and target texts (Zhang,
Xiong, Su, Duan, & Zhang, 2016; Shah & Barber, 2018; Eikema & Aziz, 2019). Related
models include Yang, Liu, Xie, Wang, and Balasubramanian (2019), who include a latent
variable to model part-of-speech in MT; and Bastings, Aziz, Titov, and Sima’an (2019),
who introduce latent dependency parses in the decoder.

Controllability. Controllability in machine translation provides mechanisms to provide
humanlike translated text. Explicit control mechanisms include measures to translate spe-
cial entities, domain-specific dictionaries and other weighted decoding approach. Some ap-
proaches use placeholders for special entities and replace them through post-processing
(Crego et al., 2016; Calixto et al., 2017b). Other enforce tokens in beam search at de-
coding time (Hokamp & Liu, 2017; Hasler, de Gispert, Iglesias, & Byrne, 2018; Post &
Vilar, 2018), the same approach proposed for image captioning in (Dinu, Mathur, Federico,
& Al-Onaizan, 2019; Yang, Gao, Wang, & Ney, 2020). Similar techniques have also been
explored for controlling output length (Murray & Chiang, 2018; Melaku, Di Gangi, & Fed-
erico, 2019). Conditional training approaches use non-autoregressive models to reduce
the complexity of enforcing constraints at decoding time (Susanto et al., 2020), and include
either soft or hard constraints during training (Dinu et al., 2019).

In conclusion, we have seen remarkable performance boost in Machine Translation with
the introduction of neural MT models. RNN-based models with attention mechanisms
were the major driving force behind this progress, though nowadays they are replaced with
Transformers-based neural architectures. Multimodal and/or multilingual extensions to
these models have also been extensively studied in the literature, but they require a notable
amount of paired training data. In this regard, a recent trend in MT community is to utilize
less or even no labeled data to relax the supervised formulation of the task, which opens
up the possibility of applying novel learning strategies.

6.2 Description Generation

The goal of description generation is to create natural text describing the contents of non-
textual input data. Description generation can be categorized into two main types de-
pending on the form of input, i.e., image-to-text approaches that handle visual inputs and
data-to-text approaches that operate on non-visual inputs. Here we focus on the first form
of description generation, i.e., when the goal is to generate descriptions for either images or
videos.

The general goal of description generation from a formal standpoint is to find a mapping
X → Y , where X denotes some (typically) non-textual input and Y refers to a description
that is supposed to cover the most salient information about X in the form of a sequence of
natural language tokens. X can take up many different forms, including images and videos
(Kiros, Salakhutdinov, & Zemel, 2014; Sun et al., 2019), tabular data (Shahidi, Li, & Lin,
2020; Wang, Wang, An, Yu, & Chen, 2020; Chen, Chen, Su, Chen, & Wang, 2020; Parikh
et al., 2020) as well as Resource Description Framework (RDF) triplets (Gardent, Shimorina,
Narayan, & Perez-Beltrachini, 2017) or abstract meaning representations (AMRs) (Fan &

24



The State of the Art in Neural Natural Language Generation

A group of people 
shopping at an 
outdoor market. 
!
There are many 
vegetables at the 
fruit stand.

Vision!
Deep CNN

Language !
Generating!

RNN

Figure 3: Illustration of the Neural Image Captioning (NIC) image-to-text description gen-
eration from (Vinyals et al., 2015).

Gardent, 2020). Here, we focus on image-to-text description generation, that is, we overview
approaches that take some visual data as input and turn them into textual output.

Seminal work in image captioning (Kiros et al., 2014; Vinyals et al., 2015; Xu et al.,
2015) aims at providing a textual description of input images and it can be considered as
the most common form of image-to-text description generation.

Figure 3 illustrates a schematic overview of neural image captioning (Vinyals et al.,
2015), a prototypical image-to-text description generation task. The general end-to-end
approach, also employed in (Vinyals et al., 2015), is to extract a set of features from a
CNN-encoder network and use these features to generate the descriptions with the help
of a recurrent neural network. (Xu et al., 2015) demonstrated how visual attention can
improve the quality of image captioning. A thorough survey covering additional seminal
work related to automatic description generation from images can be found in (Bernardi
et al., 2016).

Multimodality. As the core goal of description generation is to generate textual output
from non-textual input, multimodality is trivially met for all the approaches discussed in
this section. To this end, we decide not to discuss any of the papers in details from this
respect. Additionally, as mentioned earlier in Section 4.3.2, multimodality can also refer
to the case when a model is trained using inputs of different modalities simultaneously,
e.g., (Lu et al., 2019; Tan & Bansal, 2019).

Multilinguality. Miyazaki and Shimizu (2016) created a small version of the MS COCO
dataset (Lin, Maire, Belongie, Hays, Perona, Ramanan, Dollár, & Zitnick, 2014) in Japanese.
Their best model exploited the English MS COCO dataset in a transfer learning setup, i.e.,
they first trained an encoder-decoder model that used VGGNet (Simonyan & Zisserman,
2015) for extracting features from images and providing those as initial inputs for the LSTM
module generating the captions. After an English model was trained until convergence, the
fully connected layer responsible for transforming the image features from the pre-trained
VGGNet to the LSTM component was re-utilized for the generation of Japanese captions.
Wang, Wang, Zhang, Su, Wang, and Xu (2020) also relied on this kind of cross-lingual
transfer learning strategy for caption generation in Chinese.

Lan, Li, and Dong (2017) proposed a model for generating captions in Chinese with-
out relying on image-caption pairs in their target language. The lack of human-provided
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captions in the target language was overcame via the application of machine translation.
However, since the quality of machine translations are not necessarily satisfying, the authors
trained an LSTM model for assigning fluency scores to machine translated captions. The
target language image captioning model is then trained following (Vinyals et al., 2015) by
jointly relying on the machine translated captions and their predicted fluency scores.

Gu, Joty, Cai, and Wang (2018) dealt with generating image descriptions in English as
the target language, while using Chinese as a pivot language. Their model assumed access
to gold standard image captions in the pivot language as well as an independent parallel
corpus containing translations from the pivot language to the target language, i.e., the
model consists of an image captioning and a neural machine translation submodule. The
authors experimented with soft parameter sharing between the two tasks and joint training.

The Second Shared Task on Multimodal Machine Translation and Multilingual Image
Description (Elliott et al., 2017) featured the task of multilingual image description for
English and German. The baseline provided by the organizers was an image captioning
system that was trained exclusively on German data in a monolingual setting. The only
submission that managed to outperform the performance of the baseline system (Jaffe,
2017) leveraged the multilingual training data in a way that the final hidden layer of the
LSTM network producing target language captions was fed into another LSTM as input for
generating source language captions (without relying on the actual image as input).

Wang, Wu, Chen, Li, Wang, and Wang (2019) recently released their multilingual and
multimodal dataset of video captionings, VaTeX. The dataset contains more than 40K
videos and 800K captions in English and Chinese for which data the authors introduced
the tasks of multilingual video captioning and video-guided machine translation.

Learning strategies. Zhao, Wang, Ye, Yang, Zhao, Luo, and Qiao (2018) introduced
the Multi-task Learning Approach for Image Captioning (MLAIC). MLAIC encompasses a
multi-class image classification CNN component for encoding images and a stacked LSTM
decoder which is responsible for generating the caption as well as the syntactic structure
of the caption. The MLAIC framework is further extended with a reinforcement learning
component which uses the CIDEr (Vedantam et al., 2015) scores as its reward function.
The framework proposed in (Li & Gong, 2019) builds on top of the encoder-decoder ar-
chitecture S2VT (Venugopalan, Rohrbach, Donahue, Mooney, Darrell, & Saenko, 2015) for
video captioning, and it implements a multi-task reinforcement learning model, where the
auxiliary tasks are related to the prediction of attributes extracted from videos.

Bor-Chun Chen and Chen (2017) incorporated video summarization and video cap-
tioning into the Video to Text Summary (V2TS) architecture. V2TS is jointly trained to
perform summarization, i.e., to extract the most salient frames from a video, and to gener-
ate a caption for the summarized frames using a multi-task objective. Video summarization
is treated as a regression problem in V2TS, in which the task is to predict the correct im-
portance score of the video frames. The selection of the most salient sequences of frames
(shots) from a video is then treated as an instance of the knapsack problem, the objective
of which is the maximization of the summed utility of the selected subset of items (shots
in this case), such that the constraint originating from the total capacity of the knapsack
(the total length of the video summary) is not violated.
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A few methods that provide descriptions to videos have already been briefly discussed
in Section 4.3.2 on the fundamentals related to multimodality. Here, we provide additional
practical details on some of the earlier mentioned architectures. VideoBERT (Sun et al.,
2019) extends self-supervised learning via the application of bidirectional Transformers to
visual inputs by deriving ‘visual words’ from video inputs via the application of hierarchi-
cal vector quantization on the features derived from videos. Vision-and-Language BERT
(ViLBERT) (Lu et al., 2019) follows a similar approach, with the notable difference that
instead of incorporating the textual and quantized visual input into a single encoder, it
feeds the different input modalities to separate Transformers that interact each other via
a co-attention mechanism. ViLBERT is jointly trained for masked multimodal learning
and multimodal alignment prediction, i.e., it aims at reconstructing masked words from
captions and masked region categories from images, as well as deciding whether a caption
is well aligned with the content of the image it belongs to.

Similar to other state-of-the-art image captioning systems, Oscar (Li, Yin, Li, Zhang,
Hu, Zhang, Wang, Hu, Dong, Wei, Choi, & Gao, 2020) employs a vision-and-language
Transformer architecture. Oscar is based on the observation that salient objects (object
tags) are also often included in the image descriptions, hence the training samples are
considered as triples, pertaining of a word sequence (the caption itself), a set of object tags
originating from the image, and a set of image region features. The model is then trained
via the aggregation of a masked token loss and a contrastive loss, which needs to decide if
the input caption of an image got perturbed.

Zhou, Palangi, Zhang, Hu, Corso, and Gao (2020) has also demonstrated the utility
of large vision-language pre-training (VLP) in both image captioning and visual question
answering. The VLP in (Zhou et al., 2020) was trained jointly on two tasks: bidirectional
and sequence-to-sequence (seq2seq) masked vision-language prediction.

Controllability. Deshpande, Aneja, Wang, Schwing, and Forsyth (2019) trained a neural
image caption generation framework by imposing restrictions on the set of allowed part-
of-speech (POS) sequences on the generated descriptions. The (quantized) POS sequence
conditioned generation of image descriptions makes the fast generation of diverse captions
possible compared to the application of beam search for generation. The architecture pro-
posed in (Cornia, Baraldi, & Cucchiara, 2019) allows for the generation of controllable
image descriptions, i.e., the generation process is designed such that it can be grounded
on specific regions of an image. The model treats the generated captions as a sequence
of chunks generated for the image regions, where the transitions between image regions
are controlled by a gating mechanism. This approach offers a radically different way of
controllability compared to (Deshpande et al., 2019), as it suggests a way of controllability
from the input side, by encouraging the generated content to focus on various regions of
the input image. On the contrary, (Deshpande et al., 2019) achieved controllability related
to the grammatical structure of the generated output description. The main difference is
that while the former approach affects the generated output implicitly, the latter one does
so in a more explicit form.

Another goal of controllability could also be to improve the consistency of the generated
descriptions with certain information needs. In that vein, Alikhani et al. (2020) annotated
10,000 image-caption pairs towards their coherence relations. The five coherence categories
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(Visible, Subjective, Action, Story and Meta) investigated were inspired by computational
models of discourse. Based on the coherence-annotated dataset, the authors also designed
a coherence-aware image captioning framework which is based on an encoder-decoder ar-
chitecture, using an image feature extractor and an object classifier as input.

Image captioning models typically assume that captions are sampled from a single distri-
bution. In contrast, Fisch, Lee, Chang, Clark, and Barzilay (2020) argue that appropriate
captions differ based on the information need of users. They recast the task as one of
outputting a caption for an image, such that the caption entails the answer to an (im-
plicit) question-answer pair, using a reinforcement learning paradigm, where the reward is
contingent on a caption being contextually appropriate, given some (q, a) pair.

Another frequently studied aspect of controllability relates to the generation of descrip-
tions according to some desired mood, style or personality. The rest of this section reviews
such approaches. Context Sequence Memory Networks (Park, Kim, & Kim, 2017) are ca-
pable of creating personalized image captions via the incorporation of a memory network
component that encourages the model to include words from the active vocabulary of users
during description generation. Besides the user context memory, the architecture also in-
cludes an image memory and a word memory component that offers an improved treatment
of long-range dependencies.

Chen, Pan, Liu, and Sun (2019b) proposed an unsupervised stylish image generation
approach. Their network is trained towards the minimization of a joint objective compris-
ing of a standard image description generation loss, i.e., the sum of the cross-entropy of
correct description words, and an unsupervised image description reconstruction loss that
is intended to learn the idiosyncrasies of generating descriptions according to a particular
style. Adaptation to styles unseen during the training phase requires training additional
parameters via soft parameter sharing.

Shuster, Humeau, Hu, Bordes, and Weston (2019) introduced the Personality-Cap-
tions dataset consisting of more than 240,000 images labeled with one of the 215 personality
traits, such as anxious and optimistic. The authors extended three image captioning models
(Vinyals et al., 2015; Xu et al., 2015; Anderson et al., 2018) by learning a personality
embedding for each of the personality traits and concatenating those to LSTM decoders
during image captioning.

A predominant approach in Description Generation is the application of encoder-decoder
architectures, e.g. a CNN for processing images/videos and an RNN generating descrip-
tions. Most recently, the application of vision-language pre-training has gained an increas-
ing popularity and the best performing models are dominantly using joint vision-language
Transformer models. Due to the demonstrated effectiveness of large-scale self-supervised
pre-training, this trend is likely to continue in description generation as well.

6.3 Automatic Speech Recognition

The primary goal of scientists dealing with Automatic Speech Recognition (ASR) is to
transcribe speech into a sequence of words accurately. ASR traditionally consists of two
components: an acoustic model P (S|W ) that gives probability, that the list of words W
sounds like utterance S, and a language model P (W ) that is a probability distribution over
sequences of words. Recently, much works has been centered around end-to-end models

28



The State of the Art in Neural Natural Language Generation

Figure 4: Outline of the audio-visual speech recognition pipeline (Afouras et al., 2018).

models. Such models replace the traditional components of an ASR system with a single
end-to-end training.

The first work that showed that DNNs work for large-vocabulary ASR in realistic set-
tings is by Seide, Li, and Yu (2011). The end-to-end systems operate using the connection-
ist temporal classification (CTC) (Graves, Fernández, Gomez, & Schmidhuber, 2006), the
recurrent neural network transducer (RNN-T) (Graves, 2012) or attention-based sequence-
to-sequence model (Bahdanau, Chorowski, Serdyuk, Brakel, & Bengio, 2016; Chan, Jaitly,
Le, & Vinyals, 2016). Recently, speech recognition with Transformers has been explored
(Vaswani et al., 2017).

Multimodality. In multimodal ASR most of the research papers explore the integra-
tion of the visual modality. Graphical representation of the audio-visual speech recognition
pipeline is given in Figure 4. The use of this modality is focused on improving the perfor-
mance of ASR under both clean and noisy conditions (Wei, Zhang, Hou, & Dai, 2020; Srini-
vasan, Sanabria, & Metze, 2019). Commonly, such recognition systems adopt visual features
extracted from the speaker’s mouth region. These features are distances between the facial
markers (Cygert, Szwoch, Zaporowski, & Czyzewski, 2018; Tao & Busso, 2018b, 2018a) or
appearance-based features (Fernandez-Lopez & Sukno, 2018; Tao & Busso, 2018b, 2018a).
To build knowledge from mouth region features special multimodal corpora are needed
(Czyzewski, Kostek, Bratoszewski, Kotus, & Szykulski, 2017; Kawaler & Czyzewski, 2019).

In recent studies, instead of speaker’s mouth localization, visual semantic features are
considered as an alternative. Examples of these features are objects and scenes that can be
automatically detected in the video (Miao & Metze, 2016; Gupta, Miao, Neves, & Metze,
2017). Initial results of end-to-end speech recognizer adaptation to the visual semantic
features were presented by Palaskar, Sanabria, and Metze (2018). To adapt a CTC bidirec-
tional LSTM acoustic model and a sequence-to-sequence model, the authors evaluated vi-
sual adaptive training and early feature concatenation, respectively. The work of Caglayan,
Sanabria, Palaskar, Barraul, and Metze (2019) can be considered as an extension of this
research. The authors analyzed the behavior of adaptive training in sequence-to-sequence
models. A promising approach is the system based on a RNN-T – regardless of the training
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difficulties specific to this architecture (Makino, Liao, Assael, Shillingford, Garcia, Braga,
& Siohan, 2019; Braga, Makino, Siohan, & Liao, 2020). Srinivasan et al. (2019) analyzed
to what extent auxiliary modalities improve performance over unimodal models, and under
what circumstances the auxiliary modalities are useful. Experimental results show that all
of the considered multimodal models i.e., hierarchical feature attention, encoder initializa-
tion, early decoder fusion, and encoder-decoder initialization considerably outperform the
unimodal baseline model (sequence-to-sequence model with attention) on the full unmasked
test set. However, these models do not incorporate visual information when the audio signal
has been corrupted. This issue remains unresolved. In Sterpu, Saam, and Harte (2020) it
was found that Transformers also learn cross-modal monotonic alignments, but suffer from
the same visual convergence problems as the LSTM model, calling for a deeper investigation
into the dominant modality problem (as outlined in Section 4.3.2), where patterns need to
be discovered in the weaker visual signal.

Multilinguality. A multilingual ASR system is an ASR system trained on data from
more than one language. Multilingual training is focused on improving the performance
of speech recognition, especially for low-resource languages (Yi, Tao, Wen, & Bai, 2018;
Alumäe, Tsakalidis, & Schwartz, 2016; Dalmia, Sanabria, Metze, & Black, 2018).

In state-of-the-art multilingual ASR systems, only the acoustic model is multilingual
(Thomas, Audhkhasi, Cui, Kingsbury, & Ramabhadran, 2016; Sercu, Saon, Cui, Cui, Ram-
abhadran, Kingsbury, & Sethy, 2017). Language-specific pronunciation and language mod-
els are still required. The hidden layers of the network are trained jointly using data from
multiple languages (Sercu, Puhrsch, Kingsbury, & LeCun, 2016; Zhou, Zhao, Xu, & Xu,
2017). To improve the recognition accuracy, acoustic adaptation methods have been pro-
posed (Liu, Wan, Xu, & Zhang, 2018; Tong, Garner, & Bourlard, 2017b).

Nowadays, end-to-end multilingual ASR systems have proved promising in extending
multilingual speech recognition because they have simplified training by eliminating the
need for linguistic information (Kim & Seltzer, 2018; Cho, Baskar, Li, Wiesner, Mallidi,
Yalta, Karafiát, Watanabe, & Hori, 2018; Toshniwal, Sainath, Weiss, Li, Moreno, Wein-
stein, & Rao, 2018). The models are trained jointly on data from all languages using the
union of language-specific grapheme sets. For example, Kannan, Datta, Sainath, Weinstein,
Ramabhadran, Wu, Bapna, Chen, and Lee (2019) experiments on multilingual RNN-T, a
streaming end-to-end model, which handles a key challenge of real world data, namely, the
imbalance in the training data across languages. Results showed that the model significantly
outperforms both the monolingual RNN-T models, and the state-of-the-art monolingual
conventional recognizers, when language-specific adapter modules were added. To improve
language discriminability in end-to-end multilingual ASR systems, language-adaptive train-
ing methods have been applied (Liu, Xu, & Zhang, 2020; Toshniwal et al., 2018; Miiller,
Stiiker, & Waibel, 2018).

The above-mentioned models have been successfully used in various multilingual ASR
tasks. However, the challenge faced by the models is related to building an ASR system that
can successfully deal with code-switching scenarios. To solve the system problem of dealing
with two or more languages at the same time, a language identification based approach is
incorporated (Li, Li, Ye, Zhao, & Gong, 2019; Zeng, Khassanov, Pham, Xu, Chng, & Li,
2018) or a code-switch language model is integrated (Yue, Lee, Yilmaz, Deng, & Li, 2019).
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One main challenge for code-switching task is a scarce resource of data, therefore different
augmentation techniques are proposed (Long, Li, Zhang, Wei, Ye, & Yang, 2020; Du, Li,
Lu, Wang, & Qian, 2021).

Learning strategies. Training a single system to solve multiple tasks in parallel is con-
sidered an effective method used to improve speech recognition performance (Tang, Li, &
Wang, 2016). Multi-task learning can be divided into two categories: monolingual and
multilingual. Within monolingual multi-task learning, network training is performed by
paying attention to the auxiliary tasks or via ignoring them by using the adversarial learn-
ing (Meng, Li, Chen, Zhao, Mazalov, Gang, & Juang, 2018; Sun, Yeh, Ostendorf, Hwang, &
Xie, 2018). The multi-task learning is incorporated by using additional linguistic features
(Toshniwal, Tang, Lu, & Livescu, 2017; Pironkov, Dupont, & Dutoit, 2016) as well as by
using speaker (Saon, Kurata, Sercu, Audhkhasi, Thomas, Dimitriadis, Cui, Ramabhadran,
Picheny, Lim, Roomi, & Hall, 2017) or recording (Serdyuk, Audhkhasi, Brakel, Ramabhad-
ran, Thomas, & Bengio, 2016; Shinohara, 2016) information. The CTC objective function
as an auxiliary task is used in Kim, Hori, and Watanabe (2017). In multilingual multi-task
approach, each language is considered as a different task (Bukhari, Wang, & Wang, 2017).

More recently, transfer learning has gained popularity in ASR. Transfer learning is
widely applied in multilingual ASR to improve the performance on target languages by
learning to share model parameters across languages (Kim & Seltzer, 2018; Cho et al.,
2018; Popović, Pakoci, & Pekar, 2019; Joshi, Zhao, Mehta, Kumar, & Li, 2020). An
adaptation of transfer learning for child speech recognition is given in (Tong, Wang, & Ma,
2017a; Matassoni, Gretter, Falavigna, & Giuliani, 2018; Shivakumar & Georgiou, 2020).
In multimodal speech recognition transfer learning implies pre-training the visual front-end
on word excerpts (Petridis, Stafylakis, Ma, Tzimiropoulos, & Pantic, 2018; Afouras et al.,
2018).

With regards to learning strategies, there have been studies examining knowledge dis-
tillation to improve the performance of ASR system. In Xu, Hou, Song, Guo, and Dai
(2019) several same sized encoder-decoder models are selected as multiple teacher models
including multilingual teacher and monolingual teachers for each language. An investigation
of the effectiveness of knowledge distillation in the context of multilingual models is given
by Cui, Kingsbury, Ramabhadran, Saon, Sercu, Audhkhasi, Sethy, Nussbaum-Thom, and
Rosenberg (2017).

A review of the literature revealed that a lot of effort is currently being made to provide
multilingual and multimodal research on ASR. Most of the papers on multimodal ASR
deal with the integration of the visual modality, which is realised as features of the mouth
region or more recently as visual semantic features. Multilingual training is dealing with
data from more than one language and usually involves tasks in low-resource languages. As
regards the issue of achieving high accuracies in speech recognition, learning strategies such
as transfer-learning and knowledge distillation are used.

6.4 Abstractive Summarization

The aim of summarization is to condense one or more information sources while preserving
their relevant content and meaning. In this manner, depending on the input, sources of
different types can be summarized. Of these, text, video, and images are among the most
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Figure 5: Outline of a standard abstractive summarization pipeline (Song et al., 2019).

common. Abstractive summarization is a technique in which the summary is generated
by creating novel sentences, instead of simply extracting the important sentences verbatim
(Gupta & Gupta, 2019). This is done by either rephrasing or using new words, and it
helps to increase the quality of summaries produced from textual data, as well as the
ones where non-textual or cross-language data are given as input. Multimodal abstractive
summarization is closely related to description generation (see Section 6.2), with the main
distinction being that for abstractive text summarization, the primarily input – as well as
the expected output – is textual, whereas description generation deals with non-textual
input.

Works that exclusively focus on abstractive summarization, paying attention to the re-
cent developments concerning to the use of neural networks can be found in (Gupta &
Gupta, 2019), (Lin & Ng, 2019), (Baumel & Elhadad, 2019) and (Shi, Keneshloo, Ramakr-
ishnan, & Reddy, 2021). Figure 5 and Figure 6, both extracted from (Song, Huang, &
Ruan, 2019), show the standard process description and an encoder-decoder architecture
for generating abstractive summaries, where the input consists of phrases instead of words.

To define abstractive summarization more formally, let S = (s1, . . . , sN ) be a collection
of information sources (e.g., a single document, a collection of documents, a collection of
facts) of variable length L, and let R be the set of relevant information units in S. An
abstractive summary Abs is a generated text of length |Abs| < L, such that Abs maximises
the coverage of R, while expressing it in a different way from S.

Multimodality. Abstractive summarization can be said to be multimodal whenever the
summarization algorithm is applied to information in more than one modality, either in the
input or the output (e.g., video, text, images, among others). To some extent, multimodal
summarization can be related to description generation (explained in Section 6.2), i.e. the
most salient information from the input has to be covered in the generated output. An
important difference between the two tasks is that for multimodal abstractive summariza-
tion at least part of the input is textual, whereas for description generation, this is not
the case. Focusing on multimodal abstractive summarization, we can distinguish between
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Figure 6: Example of an encoder-decorder architecture for abstractive summarization (Song
et al., 2019).

multi-modal to text, and multi-modal to multi-modal scenarios. Concerning the former (i.e.,
multi-modal to text), Li, Zhu, Ma, Zhang, and Zong (2017) proposed a multimodal sum-
marization method that can automatically generate a textual summary given a multimodal
input containing documents, images, audio and videos. The authors further introduced the
MMS corpus.16 Similarly, in order to produce a short textual summary from a pair consist-
ing of a sentence and an image, Li et al. (2018) improved the MMS corpus, and constructed
the MMSS dataset17 for the task of multimodal sentence summarization. The How2 dataset
(Sanabria et al., 2018) collects instructional videos about different topics. This dataset has
been used for video summarization in several reseach works (Libovický et al., 2018; Palaskar
et al., 2019). In these previous works, the multimodality aspect in the input is limited to
images (including video frames) and text, however, in Li et al. (2017), video transcripts are
also used for dealing with the audio/speech.

As for multi-modal to multi-modal summarization, for the problem of text-image-video
summary generation (TIVS) from multimodal input, Jangra, Jatowt, Hasanuzzaman, and
Saha (2020) created a text-image-video dataset by extending and manually annotating the
previously developed MMS dataset (Li et al., 2017). In (Chen & Zhuge, 2018), the DailyMail
dataset18 was extended by collecting images and captions from the Web, and then text and
images are used simultaneously as input and output for the summary generation process.
The proposed architecture relies on an attentional hierarchical Encoder-Decoder, where in

16. MMS corpus, http://www.nlpr.ia.ac.cn/cip/ZhangPublications/emnlp_en.htm
17. MMSS dataset, http://nlpr-web.ia.ac.cn/cip/ZhangPublications/ijcai2018-en.htm
18. https://github.com/abisee/cnn-dailymail
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the encoding stage, a bi-directional RNN and a CNN network are used for the text and the
images, respectively. Also using DailyMail dataset as a basis, in (Zhu et al., 2018), some
pictorial summaries were first annotated. Then, a model based on a Pointer-Generator
Network (See, Liu, & Manning, 2017) is extended consisting of four modules: (i) text
encoder (a BiLSTM), (ii) image encoder (the VGG19 model pretrained on ImageNet) to
extract global or local features from images, (iii) multimodal attention layer, which aims
to fuse textual and visual information during decoding stage; and finally a (iv) summary
decoder, through a unidirectional LSTM. The authors in (Zhu et al., 2018) propose a
novel multimodal automatic evaluation (MMAE) method achieving a better correlation
with human judgements of multimodal summaries.

Multilinguality. When multilinguality is the main aim of the summarization process,
many researchers have used off-the-shelf methods and pretrained language models in order
to examine their influence on the task of abstractive summarization. Aksenov et al. (2020)
conditioned the encoder and decoder of a Transformer-based neural model on the BERT
language models for English and German.

When the input and output language is different, the task is seen as cross-lingual summa-
rization, where traditionally machine translation and summarization have been integrated
and combined into the same approach, by either first translating the original document into
the target language and then summarizing it, or vice versa Shreve (2006), Wan, Li, and Xiao
(2010), Grega, Smäıli, Leszczuk, González-Gallardo, Torres-Moreno, Pontes, Fohr, Mella,
Menacer, and Jouvet (2018). Zhu et al. (2019) propose a different approach, where the task
of cross-lingual summarization is addressed end-to-end with the support of automatically
constructed corpora. In this case, the languages involved are English and Chinese.

In contrast, other researchers have been proposing language-independent methods that
were later evaluated on datasets in various languages for the purpose of experimenting with
different languages. This is the case of the research proposed by Li et al. (2017), where
the multilingual MMSS corpus, available for English and Chinese, was used for evaluation.
As previously mentioned, this corpus is also multimodal. In order to reconstruct the title
of Wikipedia articles in which the title, subtitle and the summary were masked, Liu et al.
(2019c) evaluated their proposed approach in 42 languages.

Learning strategies. In some cases, the summarization task is addressed by relying
on other tasks (e.g. textual entailment), or by joining training extractive and abstractive
summarization strategies.

Specifically, for the task of sentence summarization that creates a condensed version of a
long source sentence, Li et al. (2018) proposed an entailment-aware encoder under a multi-
task framework comprising summarization generation and entailment recognition. Chen
et al. (2019) proposed a general unified framework for abstractive summarization which
incorporated extractive summarization as an auxiliary task, by constraining the attention
learned in the abstractive task with the labels of the extractive task to strengthen the
consistency between the two tasks.

Pasunuru et al. (2017) employed a multi-task learning setting for increasing the con-
sistency of the summaries generated by the decoder of their neural sequence-to-sequence
architecture. This was achieved by sharing the parameters of their decoder with an encoder
and applying them for the generation of such output sentences for which the entailment
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relation holds relative to some premise sentence from the SNLI (Bowman et al., 2015) nat-
ural language inference dataset. The model proposed by Guo et al. (2018) also incorporates
an encoder for the entailment generation component, however, it was additionally trained
towards question generation as well, while advocating soft parameter sharing between the
primary task (abstractive summarization) and the auxiliary learning objectives (question
generation and entailment generation). Xu et al. (2020) introduced an encoder-decoder ar-
chitecture by defining such a multi-task learning framework which also involves loss terms
for extracting key sentences and keywords. Their pointer-generator architecture benefits
from the auxiliary losses, which encourage the summarizer to cover the most salient parts
of the input documents in the generated summary.

Controllability. Controllability in abstractive summarization includes mechanisms that
enable control of important aspects of a generated summary contributing to the generation
of content tailored to user needs. The aspects of the generated output are the length of
summary (Fan et al., 2018; Liu et al., 2018; Amplayo & Lapata, 2021; Wang et al., 2020),
entities in the focus of interest (Fan et al., 2018), the style of generated text (Fan et al.,
2018), sentiment or politeness of summarized text (Amplayo & Lapata, 2021), the desired
content (Amplayo & Lapata, 2021) or summarization of desired parts of inputs (i.e. the
remaining part of text) (Fan et al., 2018).

The method by Kikuchi et al. (2016) provided early motivation for work on controllable
abstractive summarization. They achieve explicit control of desired output length either in
the encoder during training, or in the decoder during generation. Important principles on
the length controllability in abstractive summarization were subsequently laid down by (Fan
et al., 2018). The control of summary length is enabled with a quantized length marked
during learning. The output length, in the form of a five-word headline, single sentence or
paragraph, is controlled by a marker token and improves the quality of generated output.

Entity-centric summarization sets the focus of a generated summary on a person, loca-
tion or organization. During generation the desired entity token is prepended to the input
contributing to the quality of generated content even when several entities are included in
generation. Similarly, an extra marker is used to represent the source style and used as the
marker for generated content.

In the work on the summarization from only selected parts of text authors in (Liu
et al., 2018) extended the standard model with the explicit coding of the summary length
provided from gold standards during training and controlled as input parameter during
generation. Specifically, the model learns the probability of generating an EOS (end of
summary) token, hence has the ability to use its internal state for the definition of the output
length without sacrificing semantic information or lowering ROUGE score19. In (Amplayo
& Lapata, 2021) a two-stage condense-abstract method is proposed. In the first stage all
documents (opinions) are encoded, condensing their meaning and distilling information like
sentiment or aspects. In the second stage condensed representations are aggregated into a
multi-source fusion model. The generated summary can be controlled for the polarity of
the reviews or the aspects covered.

19. ROUGE is a well-known evaluation metric for automatic summarization that measures the content
overlap between an automatic summary and a reference one.

35



Although a lot of progress has been done in the context of Abstractive Summariza-
tion, there is still a room for improvement of the generated content quality and coherence.
Regardless whether the studied aspect is multimodal, multilingual or controlled the final
summary should take advantage of pre-trained models that work well for other text genera-
tion tasks. Specifically, multimodality is mainly studied as the multi modal input (i.e. text,
video, images) and either textual or multimodal output. The reported progress is indicat-
ing that multimodality is beneficial for abstractive summarization performance. It seems
that mulitilinguality remains the main challenge in abstractive summarization task, while
reported research is mainly relaying upon the machine translation to provide multilingual-
ity of the summaries and crosslingual summarization is scarcely addressed. The aspect of
controllability is propelling a research in abstractive summarization with either controlled
length, content or polarity, achieving better semantic content without deterioration of the
performance and enabling better coherence of generated content. In all cases, coherent,
truthful and useful summaries must be guarantee to avoid, for instance, misinformation
problems.

6.5 Text Simplification

Text Simplification is the process of reducing the linguistic complexity of a text, while
retaining the original information content and meaning (Saggion, 2017). Text Paraphrasing
is defined as an approximate equivalence of meaning across sentences or phrases (Bhagat
& Hovy, 2013). The main differences between Text Simplification and Text Paraphrasing
lies in their handling of text complexity and in the aim of the text reducing task. Figure 7
illustrates a Text Simplification pipeline that uses word embeddings to extract candidate
terms and Text Paraphrasing to generate simplified texts (Maddela et al., 2021).

A neural simplification model with global attention and input feeding was proposed
in (Nisioi, Štajner, Ponzetto, & Dinu, 2017). This approach uses a Sequence to Sequence
(Seq2Seq) Neural Network to model text simplification in order to simultaneously perform
lexical simplification and content reduction. Human evaluation showed that the Seq2Seq-
based systems can significantly outperform the best phrase-based and syntax-based Machine
Translation approaches.

A system that performs transformations, not only at the lexical and syntactic levels but
also on the discourse level, was proposed in (Štajner & Glavaš, 2017). The proposed system
pipeline combines event-based simplification with lexical simplification. The event-based
simplification module is based on an event extraction system, i.e., EvGraph, and uses only
11 rules to perform sentence splitting and deletion of irrelevant sentences or sentence parts.
The lexical simplification module uses LightLS which leverages word embeddings trained
on a large (standard English) corpus, thus not requiring any parallel or comparable Text
Simplification corpora. This approach leads to significantly more content reduction within
a sentence and within a text, managing to even delete whole sentences.

Some systems try to solve the text simplification task using a paraphrasing approach (Xu,
Napoles, Pavlick, Chen, & Callison-Burch, 2016). Thus, given an input text, the task is to
rewrite it, with the aim that the output should be simpler than the input, while preserving
as much of the meaning of the input as possible, and maintaining the well-formedness of
the text. To achieve these, the authors modified four key components of a syntax-based
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Figure 7: Illustration of a Controllable Text Simplification with Explicit Paraphrasing
Pipeline after (Maddela et al., 2021).

machine translation framework using: 1) two novel simplification-specific tunable metrics;
2) large-scale paraphrase rules automatically derived from bilingual parallel corpora, 3)
rich rule-level simplification features; and 4) multiple reference simplifications collected via
crowd-sourcing for tuning and evaluation.

In Mallinson, Sennrich, and Lapata (2017), the authors propose a neural model that is
able to automatically extract paraphrases from bilingual corpora to find meaning-equivalent
phrases in a single language by pivoting over a shared translation in another language. The
method represents paraphrases in a continuous space and then either estimates the degree
of semantic relatedness between text segments of arbitrary length, or generates candidate
paraphrases for the source input. The evaluation showed that the proposed neural approach
outperforms the conventional phrase-based pivoting approaches. The proposed model is
tested on a multilingual dataset that contains texts in English, French, German, and Czech.
The model is evaluated for two distinct tasks: paraphrase similarity and sentence-level para-
phrase generation. Furthermore, the model employs a novel Neural Machine Translation
approach to train paraphrases which exploits a one-to-one NMT architecture: the source
English sentence is translated into k candidate foreign sentences and then back-translated
into English.

In (Chu, Otani, & Nakashima, 2018), the authors propose a model for extracting visually
grounded paraphrases, i.e., different phrasal expressions describing the same visual concept
in an image. Thus, given an image and all the entities in the corresponding captions,
the task is to cluster the entities to their corresponding visual concepts, represented as
image regions. The method applies different unsupervised similarity computation methods
in combination with a supervised neural network method using both textual and visual
features to explicitly model the similarity of an image segment and a potentially describing
sentence. Experiments showed that the proposed neural network approach outperformed
the other methods in the literature.

Multimodality. Text Simplification and Paraphrasing become multimodal when the in-
put data is different than the output data, e.g., the input is a video while the output is
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a textual description. For example, in the medical domain, datasets contain medical im-
agery, medical reports, etc. In this case, Text Simplification techniques are used to create
a simplified textual description that the patients can understand. Another application of
Multimodal Paraphrasing is in the sensemaking and sensegiving analysis of events presented
using different mediums. Thus, verbal text, images, and other visual artifacts constitute a
key resource for in this type of analysis (Höllerer, Jancsary, & Grafström, 2018).

Multimodal Text Simplification and Paraphrasing is usually encountered when using a
dataset that is composed of heterogeneous data. Thus, multimodality increases the difficulty
of the problems related to the complexity metric definitions, because different modalities
add more aspects to subjective assessment of the information comprehension. Paraphrase is
more broadly defined and methods for multimodal text paraphrase generation can be used
for text simplification to decrease complexity.

Such is the case of (Chu et al., 2018), in which the authors tried to extract different
phrasal expressions describing the same visual concept in an image provided as input. An-
other approach used for paraphrasing is to combine visual features extracted from medical
images with textual data from the associated reports (Li, Liang, Hu, & Xing, 2019). Fur-
thermore, the authors of (Liu, Tang, Wan, & Guo, 2019b) also use visual features generated
from images to select textual paraphrases and then give captions to images.

Multilinguality. In the context of of Text Simplification and Paraphrasing, multilingual-
ism is usually present in a way that a proposed language-independent approach is experimen-
tally applied for datasets in different languages. Such is the case of (Mallinson et al., 2017),
in which the authors tried to recognize and to generate paraphrases in the context of neural
machine translation for English, French, German and Czech. Similarly, Sjöblom, Creutz,
and Aulamo (2018) performed automatic paraphrase and semantic similarity detection on
subtitle data for German, English, Finnish, French, Russian, and Swedish. A benchmark
for multilingual paraphrasing is PAWS-X (Yang, Zhang, Tar, & Baldridge, 2019) that can
be used to evaluate paraphrase pairs in French, Spanish, German, Chinese, Japanese, and
Korean. But, the majority of systems that use a multilingual approach only employ two
languages, e.g., Chinese and English (Li et al., 2019), Korean and English (Park, Oh, Choi,
& Gweon, 2019), Japanese and English (Kajiwara & Komachi, 2016).

Learning Strategies. For the problems of Text Simplification and Paraphrasing, multi-
task learning represents the use of the same input data in order to train a model to solve
different tasks on that data. The multitask learning approach injects linguistic-based in-
ductive biases in order to improve simplification and paraphrasing quality. Thus, multitask
learning tackles multiple tasks (e.g., translation, part-of-speech tagging, and named entity
identification) using shared components of the same model.

One approach used to extract paraphrases for an image is to employ multitask (Chu
et al., 2018) training by performing coreference resolution, i.e., to find the expressions that
refer to the same entity in a text, and phrase localization, i.e., to find an image region that
corresponds to a given phrase in a caption.

Training on several tasks is used to improve performance on each individual task. In (Xu
et al., 2016), the authors adapt a syntax-based machine translation framework for para-
phrasing to perform text simplification.
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Controllability. Explicit control, in the context of Text Simplification and Paraphrasing
can be implemented by adding some specific metadata to the training process, e.g., special
tokens to represent specific grammatical attributes (Martin, Éric de la Clergerie, Sagot, &
Bordes, 2020), domain specific dictionaries (Nassar, Ananda-Rajah, & Haffari, 2019), GloVe
word embeddings to find semantically most similar candidates for any input word (Štajner
& Glavaš, 2017).

To that end, Kajiwara and Komachi (2016) automatically built a monolingual parallel
corpus for Text Simplification considering sentence similarity based on word embeddings.
In order to determine how semantically similar sentences are, Sjöblom et al. (2018) experi-
mented with sentence encoding models that take as input a single sentence and produce a
vector representing the semantics of the sentence. Similarly, Nishihara, Kajiwara, and Arase
(2019) considered levels of both sentences and words, in order to control both the lexical
and syntactic complexity and achieve an aggressive rewriting for the Text Simplification
problem. In (Nisioi et al., 2017), controllability is achieved by minimizing the vocabulary.
Furthermore, Word2Vec skip-gram model is employed to add context.

In conclusion, Text Simplification is used to reduce the linguistic complexity (e.g., re-
move redundant information, split large sentences into smaller sentences, add explanations
for domain-specific terms) while retraining the original information and meaning. Text
Paraphrasing is used to create approximate equivalent sentences. Usually, Text Simpli-
fication uses Text Paraphrasing to replace hard to understand words with simpler, more
common, words, and it employs multimodality to explain, using a simpler and easy to un-
derstand language, different kinds of data, e.g., images, videos. For both tasks, multilingual
approaches are used for proposing language-independent methods, while, multitask learning
is used to tackle multiple tasks at the same time, e.g., translation, part-of-speech tagging,
named entity identification. To achieve an aggressive rewriting for both Text Simplifica-
tion and Paraphrasing tasks, controllability is used to control both lexical and syntactic
complexity.

6.6 Question Answering and Generation

6.6.1 Question Answering (QA)

Within the literature, there has been extensive research on question answering. Most of
the works on question answering (QA) cast the problem considering different formats such
as span-selection, Yes/No, multiple choice, etc. In that regard, the models do not directly
produce an answer using natural language generation schemes but rather select the most
likely answer from the existing answer set.

Multimodality. In the recent years, there has been a surge of interest in the area of
Visual Question Answering (VQA). The task of VQA is to search for visual clues in the
image related to the question, making this an inherently multimodal task.

Recent extensive work on VQA was triggered by the availability of large image and
video question answering datasets. The COCO-QA (Ren, Kiros, & Zemel, 2015a) large-
scale object detection, segmentation, and captioning dataset was used as training data
by Wu et al. (2019). Samples from the VQA v2.0 dataset20 (Antol, Agrawal, Lu, Mitchell,

20. VQA v2.0 dataset, https://visualqa.org/
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Figure 8: Illustration of the Visual Question Answering, neural caption generation to aid
answer prediction after (Wu et al., 2019)

Batra, Zitnick, & Parikh, 2015) containing open-ended questions about images were utilized
as training instances for visual question answering by Wu et al. (2019), Huang, Huang, Guo,
Qiao, and Zhu (2019), Wu and Mooney (2019). Figure 8 illustrates a schematic overview
of neural question answer generation by generating question relevant captions (Wu et al.,
2019).

In order to provide salient image regions with clear boundaries, the Visual Genome
dataset21 (Krishna, Zhu, Groth, Johnson, Hata, Kravitz, Chen, Kalantidis, Li, Shamma,
Bernstein, & Fei-Fei, 2017) was included as a part of traning procedure by various re-
searchers (Wu et al., 2019; Huang et al., 2019; Kim & Bansal, 2019). For the specific applica-
tion of Textbook Question Answering (TQA), Kembhavi, Seo, Schwenk, Choi, Farhadi, and
Hajishirzi (2017) developed the TQA dataset22 drawn from middle school science curricula.
This dataset was later used to face the challenge of multimodal contexts comprehensions in
complicated input data contained in text books (Kim, Kim, & Kwak, 2019).

As a starting point, various authors relied on the Top-Down and Bottom-Up attention
model23 (Anderson et al., 2018) that was further enhanced by introducing a non-uniform
image region based grounding, modules and information. In order to discover the most
relevant image regions for the question, Huang et al. (2019) tried to identify instances of
objects with more general bounding boxes belonging to certain categories, using the existing
Bottom-up model. Kim and Bansal (2019) adopted this model to weight visual features
from the obtained, salient areas. Motivated by the need to create an explainable VQA
system with transparent reasoning, Wu and Mooney (2019) tried to avoid emphasis on
irrelevant portions of the image by enhancing the Bottom-up model.

Learning Strategies. Very recently there has been an interest in adopting pre-trained
autoregressive models for question answering while incorporating natural language genera-
tion for answering questions. Nishida, Saito, Nishida, Shinoda, Otsuka, Asano, and Tomita

21. Visual Genome dataset, https://visualgenome.org/
22. TQA dataset, http://textbookqa.org
23. Top-Down and Bottom-Up attention model, https://github.com/peteanderson80/

bottom-up-attention
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(2019), proposed a multi-style abstractive summarization model that generates answers
based on textual evidence. Dunietz, Burnham, Bharadwaj, Rambow, Chu-Carroll, and
Ferrucci (2020), proposed a framework to test questions answering models’ ability to com-
prehend using a large Transformer-based language model pretrained on short narratives.
Bi et al. (2020), proposed an autoencoding and autoregressive language model with pre-
training on a large corpus for natural language generation tested against question answering
task. Khashabi, Min, Khot, Sabharwal, Tafjord, Clark, and Hajishirzi (2020), used a gen-
erative text-to-text neural model to build a single pre-trained question answering model.
Chen, Stanovsky, Singh, and Gardner (2020), proposed a dataset for training and evalu-
ating generative question answering metrics and poses question answering as a language
generation problem and proposed a Transformer-based benchmark model to mimic human
judgments for the generative question answering problem.

6.6.2 Question Generation (QG)

Automatic QG is motivated by the need to have a mechanism able to construct syntactically
sound, semantically correct and relevant questions from various modalities.

Multilinguality. The application of QG was tackled from the cross-lingual perspective
(Kumar, Joshi, Mukherjee, Ramakrishnan, & Jyothi, 2019). The authors reused an available
large QG dataset in a secondary language to learn a QG model for a primary language for
Hindi/English and Chinese/English language pairs. Another line of work in multi-lingual
setup leverages pre-training to improve the model performance for question generation in
a cross-lingual setting, in which pre-training encourages the model to represent different
languages (English, Chinese and French) in the same space (Chi, Dong, Wei, Wang, Mao,
& Huang, 2020).

Multimodality. QG is extended to a multimodal setup in which the problem is formu-
lated as asking natural and engaging questions when shown an image (Mostafazadeh, Misra,
Devlin, Mitchell, He, & Vanderwende, 2016). (Jain, Zhang, & Schwing, 2017) tackled with
the problem of generating a diverse set of natural questions for a single input image, where
they investigated diverse question generating problem in the context of creativity. Shijie,
Lizhen, Shaodi, Zhenglu, and Jiawan (2017) addressed the problem of automatically gen-
erating visually grounded questions with the goal of generating different types of target
questions for a single input image. (Liu, Xiang, Hospedales, Yang, & Sun, 2018) posed the
question generation problem as a multimodal dynamic inference process and proposed the
inverse visual question answering task, where the goal is to generate a set of questions using
textual answers as input along with a single image, and the target is a natural question
sharply conditioned on the answer. (Sarrouti, Abacha, & Demner-Fushman, 2020) explored
visual question generation task in the medical domain with a model to generate visual
questions for radiology images. Figure 9 illustrates a schematic overview of neural question
generation from a visual input (Shijie et al., 2017). Recent work on question generation has
focused on various aspect of generating questions such as informativeness and usefulness
such as (Krishna, Bernstein, & Fei-Fei, 2019) where authors formulate the question genera-
tion task as a goal-driven information maximization problem and generate visual questions
that maximize the likelihood of receiving an answer. Patro, Kumar, Kurmi, and Nambood-
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Figure 9: Illustration of the Neural Question Generation, generation questions for a visual
input after (Shijie et al., 2017)

iri (2018) used the difference between relevant and irrelevant exemplars in a multimodal
question generation setup to generate natural and engaging questions.

Learning Strategies. Another line of work approached question generation task in a
multi-task setup, where a model is trained for QG jointly with other tasks. In particular,
Wang, Yuan, and Trischler (2017) showed that the QG task can be used to improve QA task
performance when jointly trained for a model that has partial extractive and abstractive
generation capacity. (Shah, Chen, Rohrbach, & Parikh, 2019) exploited cycle consistency in
question answering and question generation to improve model robustness and performance
for both question answering and question generation tasks on VQA v2.0 dataset. Li, Duan,
Zhou, Chu, Ouyang, Wang, and Zhou (2018) proposed a dual learning framework and
showed that both question answering and question generation task performance can be
improved when models are trained jointly.

Controllability. The question generation problem has also been investigated in setups in
which the QG model is optimized towards generating human-like questions by controlling
the model’s outputs with another modality, that is the type of questions such as “who”,
“where”, “when”, “why”, “which”, “what”, “how”, “yes-no”, and “other” framed as style,
and also a textual hint framed as clue by Liu, Wei, Niu, Chen, and He (2020).

In conclusion, the current efforts in Question Answering are mainly in answer span
extraction rather than natural language generation. Although neural Question Generation
(QG) received some interest lately from the community, there are still many challenges and
opportunities in adapting neural NLG models to produce useful and informative questions
as there are not so many works that deal with the automatic generation of questions from
a given context (e.g. a paragraph of text, an image).

6.7 Dialogue Generation

Dialog Generation is a fundamental component of artificial intelligence and, in general
terms, it uses different Machine Learning algorithms in order to automatically generate a
response given a textual or visual post by another agent, e.g., a user. Traditionally in the
literature, dialogue systems can be divided into two subcategories: task-oriented dialogue
systems (TOD) and chatbots (chit-chat) (Chen, Liu, Yin, & Tang, 2017) with the ability to
open domain conversation or open domain dialog (ODD). Currently, it was also proposed
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the fusion between task-oriented dialog systems (TOD) and open domain dialog (ODD)
approaches to augment responses of TOD with the diversity of ODD systems. Sun et
al. (Sun, Moon, Crook, Roller, Silvert, Liu, Wang, Liu, Cho, & Cardie, 2021) described
three models of response generation with chit-chat addition on the base of end-to-end and
code-switcher approaches. Their solution shows better human evaluation rates and similar
performance measurements for tasks on the dataset presented in the article.

A relatively new multimodal task from the field of Dialog generation is the Visual Dialog
Generation (VDG) task. The VDG task is widely considered to be an important part of
human - artificial agent interaction. It is defined as a task where a machine holds a dialog
with humans about a visual content (Das, Kottur, Gupta, Singh, Yadav, Moura, Parikh, &
Batra, 2017). In the literature, the VDG task is not restricted to image data only, it can
be grounded on a video, including both audio and visual information (Le, Sahoo, Chen, &
Hoi, 2019).

In (Palaskar, Sanabria, & Metze, 2020), the authors propose a transfer learning approach
to tackle the task of generating a textual answer in response to a textual question on
multi-media content by developing a framework that uses hierarchical attention to fuse
contributions from different modalities. The framework makes use of hierarchical attention
trained on standard video features and a specialized form of extra-textual knowledge, i.e.,
answer-relevant ”context” that includes past dialog turns. Furthermore, the framework
manages to successfully combine different modalities, i.e., text summarization trained on
multiple sources, to generate videos with commentaries. The experimental results show that
the model manages to achieve state-of-the-art performance for both automatic and human
evaluations.

In (Qian & Yu, 2019), the authors propose a domain adaptive dialog generation method
based on meta-learning (DAML) that generates dialog for a new domain by utilizing multi-
ple data sources from other rich-resource domains. DAML is an improved seq2seq encoder-
decoder network that utilizes the two-stage CopyNet to achieve optimal initialization using
dialog data from multiple domains. Thus, the model efficiently manages to generate new
domain dialog by applying two-step gradient updates to learn general features. The exper-
imental results show that DAML outperforms the state-of-the-art in Entity F1 compared
with zero-shot baseline, ZSDG, as well as other transfer learning methods.

Multimodality. The Multimodality dimension in dialog generation is obtained by adding
various types of interaction channels between the human user and the Multimodal Dialogue
System, e.g., visual (image, video), verbal (speech, tone), vision (gaze, emotion, gesture,
posture), physiological signal (blood pressure, pulse). In the literature, there are many
examples of multimodality grounded on usage of images as visual content for one more
input channel to the human - artificial agent interaction. In (Das et al., 2017), the authors
proposed a visual dialog generation task. Authors of (De Vries, Strub, Chandar, Pietquin,
Larochelle, & Courville, 2017) used image content augmented with a sequence of questions
to locate an unknown object in the picture. A different method for solving of the VDA
task is proposed in (Zhang, Ghosh, Heck, Walsh, Zhang, Zhang, & Kuo, 2019). Authors
point out that training of generative models by the maximum likelihood estimation method
(MLE) cause providing of the frequent and generic responses. In their work they proposed
weighted likelihood estimation (WLE) which assigns different weights to each training sam-
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Figure 10: Illustration of Text-and-Video Dialog Generation models with Hierarchical At-
tention after (Palaskar et al., 2020).

ple determined by positive and negative response. This approach allows to increase level of
answer diversity for the generative models. Mostafazadeh and co-workers (Mostafazadeh,
Brockett, Dolan, Galley, Gao, Spithourakis, & Vanderwende, 2017) introduced task of Im-
age Grounded Conversation(IGC) where the visual context used as a topic for a dialog
and released a dataset with multi-turn conversations about images. In article Hori, Alamri,
Wang, Wichern, Hori, Cherian, Marks, Cartillier, Lopes, Das, et al. (2019), the authors pro-
pose the addition of video input as a source for human - artificial agent interaction (Audio
Visual Scene-Aware Dialog). In this case, video is represented as a sequence of the images,
augmented with the dialog history. The task is to answer the question using this input data.
Article Palaskar et al. (2020) uses hierarchical attention trained on standard video features
and a specialized form of extra-textual knowledge to generate videos with accompanying
commentary. The graphical representation of the text-video dialog generation model with
hierarchical attention is given in Figure 10. Shuster, Humeau, Bordes, and Weston (2020)
propose a multimodal architecture for grounded dialogue and an evaluation dataset, i.e.,
Image-Chat, for the chit-chat conversations. They evaluate retrieval and generative models
with sub-components for the different modalities of the input (style, dialog history, and im-
age). From the experimental results described in this paper, we can conclude that retrieval
models show better performance than generative ones.

Multilinguality. The term multilinguality is generally understood to imply that the di-
alog is initiated and/or conducted in different languages. Most studies in the area of VDG
tend to focus on a single language rather than on multilingual approaches. But the different
language support is widely investigated in the classic, text-only dialog generation systems.
In (Chen, Qiu, Fu, Liu, & Yan, 2019a), authors introduced a novel multilingual dialogue
system tested on Chinese and English conversation corpora. This approach is based on
the Seq2Seq framework augmented with improved shared-private memory which learns lan-
guage features and improves cross-lingual transfer. Experiments on cross-lingual transfer
learning for multilingual task oriented dialog were performed by Schuster, Gupta, Shah, and
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Lewis (2019). In this study, the authors compared methods based on the translation of the
training data, cross-lingual pre-trained embedding, and multilingual machine translation
encoders as contextual word representations.

Learning Strategies. This dimension can be defined from multiple perspectives, e.g.,
from the point of view of: (i) the training process (aka Multi-task training) – the use of the
same input dataset(s) to train a model to solve multiple tasks (e.g., translation, part-of-
speech tagging, named entity identification) where models use a sequence to sequence model
with shared components, showing that training on several tasks improves performance on
each individual task, (ii) dialogue generation systems, e.g., a system whose primary task is
dialogue generation, in order to deliver and analyze sentiments during dialogue processing,
(iii) the human component which refers to the situation when a human user is busy with a
primary task(s), such as driving, eye-tracking, military, and police situations, and provide
dialogue (usually speech) as a secondary task.

In (Palaskar et al., 2020), a framework that uses summarization trained on multiple
sources is used to generate commentaries for videos. Another multi-task approach is to
learn new dialogues for resource-poor domains by training models that accurately extract
meta features from resource-rich domains (Qian & Yu, 2019).

Controllability. Explicit Control offers mechanisms that incorporate a desired invari-
ance into the learned representation. A recent review of the literature on VDG found that
researches has tended to focus on the quality of the response instead of controllability.
The majority of Dialogue Generation solutions based on generative models do not offer
explicit control. Colombo, Witon, Modi, Kennedy, and Kapadia (2019) present an affect-
driven dialogue system, which generates emotional responses in a controlled manner using
a continuous representation of emotions. Madotto, Ishii, Lin, Dathathri, and Fung (2020)
propose the adaptation of the Plug and play language models (PPLM) (Dathathri et al.,
2020) to the generation of the conversation with different styles and topics with a large
pretrained model. Plug and play conversational model (PPCM) includes a combination of
the usage of the residual adapters (Houlsby, Giurgiu, Jastrzebski, Morrone, de Laroussilhe,
Gesmundo, Attariyan, & Gelly, 2019) and attribute classifiers to guide the conversation gen-
eration without the modifications of the parameter of the pretrained language model. Smith,
Gonzalez-Rico, Dinan, and Boureau (2020) compare the performance of the retrieve-and-
style-transfer method (RnST) with PPLM and conditioned generator on inputs appended
with style tags on 217 styles. This research shows that the PPLM-style approach has lower
performance on larger style spaces, and condition generation without retrieval has stronger
style control than RnTS.

Dialog Generation systems, task-oriented or chit-chat, are attracting more and more
attention in many communities from academia and industry. From the point of view of the
analyzed dimensions, we can draw the following conclusions. The Multimodality dimension
in dialog generation is obtained by adding various types of interaction channels between the
human user and the Multimodal Dialogue System. The multilinguality dimension generally
implies that the dialog is initiated and/or conducted in different languages. From this point
of view, most studies tend to focus on a single language. Dialog Generation systems can use
multiple learning strategies for the training process, the human component, or the system
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Table 1: The maturity levels of the NLG applications with respect to the four dimensions
explored in the survey.

Multilinguality Multimodality Learning
Strategies

Controllability

Machine translation FFFFF FFFFF FFFFF FFFFF
Description generation FFFFF FFFFF FFFFF FFFFF
Automatic Speech Recognition FFFFF FFFFF FFFFF FFFFF
Abstractive Summarization FFFFF FFFFF FFFFF FFFFF
Text Simplification FFFFF FFFFF FFFFF FFFFF
Question Answering and Generation FFFFF FFFFF FFFFF FFFFF
Dialogue Generation FFFFF FFFFF FFFFF FFFFF

as a whole. As for the final dimension, the majority of the Dialogue Generation solutions
do not offer explicit control.

7. Conclusion and Further Insights

In this paper, a survey of the state of the art in Neural Natural Language Generation
(NNLG) was provided, addressing and analyzing it from a multidimensional perspective,
specifically multimodality, multilinguality, learning strategies, and controllability. These
dimensions were discussed in the context of relevant NNLG tasks and applications.

Research into multilinguality and multimodality has made advancements in recent years,
especially through multilingual and multimodal Transformers benefiting from multi-task
and transfer learning strategies. Yet, there are still general challenges to be addressed,
regarding the redundancy–complementarity aspect of both multilingual and multimodal
tasks: in modalities and in languages, there is information that is more efficiently expressed
in one modality/language, than in the other modality/language, making translation from
one to another difficult, while also making it challenging to integrate languages/modalities.
Controllability of text generated by neural models is another critical research direction, as
these strategies have the potential to reduce the biases in training data or to make use of
supporting facts in the context.There are also particular problems, task-specific challenges
to be addressed, that are worth highlighting in the context of the applications dealt with
in this survey.

Table 1 shows, in an intuitive and illustrative manner, the maturity levels of NLG
applications with respect to the four dimensions explored in this survey. More stars means
that the dimension is studied in more detail, whereas less stars indicate the need for more
research in that particular direction.

Concerning Machine Translation (MT), data availability is still a concern in those cases
where there is little availability of labelled training data by definition (e.g., unsupervised or
weakly supervised or semi-supervised settings). Upcoming research lines that have started
and could become important in the next years include using images and/or video to ground
simultaneous machine translation models, as well as MT models grounded on images and/or
video that make little or no use of parallel data. Finally, we should see many improvements
on non-autoregressive MT models in the next years as they close the performance gap with
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autoregressive Neural MT model, as it has been shown in (Zhou & Keung, 2020) or (Gu &
Kong, 2021).

Description generation and abstractive summarization share some common problems
and future directions. On the one hand, statistical and neural models can lead to problems
related to the veracity of the generated text, which may be prone to content/object hal-
lucinations, i.e. the generation of descriptions or facts that are not fully supported by the
input, for which reason more faithful approaches mitigating this effect would be desired.
On the other hand, the resulting text, especially when it has to be generated from multiple
sources of information (e.g., multi-sentence descriptions, multi-document summaries) often
lacks coherence; hence approaches that tackle e.g. the possible repetitiveness of descrip-
tions and their inconsistencies need to be developed. In addition, as interpretability and
explainability plays an increasingly important role, researching new models with increased
explainability (that go beyond saliency maps) also seems to be a promising direction for
these tasks. For both tasks —description generation and abstractive summarization—, al-
though there exist some language-independent methods, there is scarcity of resources and
datasets for languages other than English or Chinese.

In the case of Automatic Speech Recognition (ASR), although much of the work on
multimodal ASR has reported an increase in word error rate (WER), it should be noted
that there is a marginal benefit of integrating additional modalities. Some work suggests
that visual information is useful in conditions where acoustic speech is corrupted. It was
shown, that the multimodal ASR models outperform the unimodal baseline model on the
full unmasked test set. However, these models do not improve robustness to noise. The
issue of better visually grounded adaptation techniques is still to be solved. As regards
the controllable speech recognition, it can be said that all ASR systems are controllable,
because the input speech influences the output text. However, when we refer to speech
recognition system that enable additional output control beyond the text alone, a review
of the literature revealed that there are no scientific articles dealing with this issue.

Regarding Text Simplification and Paraphrasing, it is worth stressing that text sim-
plification uses text paraphrasing to replace hard-to-understand words with simpler, more
common words, and multimodality is used to explain different kinds of data, e.g., images,
videos, etc., also using these multimodal elements to support the understanding of a text.
Concerning multilinguality, language-independent methods are mainly proposed for this
task. Moreover, from the analysis conducted, it was shown that when doing Text Simplifi-
cation, other tasks could be also tackled at the same time, e.g., translation, part-of-speech
tagging, and named entity identification, etc. Thus, multitask learning is also relevant for
this task. Finally, controllability is used to control both lexical and syntactic complexity in
order to achieve an aggressive rewriting for Text Simplification and Paraphrasing.

As far as Question Generation and Visual Question Generation are concerned, the cur-
rent efforts in question answering are mainly in answer span extraction rather than natural
language generation. Lately, with the growing interest in autoregressive pretrained models
such as GPT-2 or T5, there have been some recent improvements in using generative models
while answering a given question. Furthermore, to steer the works on generative reading
comprehension and visual questions answering tasks, we need new benchmark Question
Answering (QA) datasets with open-ended answers. In line with that, developing proper
automatic evaluation metrics for these kind of open-ended QA tasks would be of importance
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in the near future. Neural Question generation is a research topic which has received some
interest lately from the community. In the literature, there are not so many works that
deal with automatic generation of questions from a given context (e.g. a paragraph of text,
an image). Thus, there are still many challenges and opportunities for adapting neural
NLG models to produce useful and informative questions. How to generate questions in a
cross-lingual setting or how to control the style of the questions to be generated are two
open problems that deserve further attention in the question generation domain as well.

Dialog generation is a central component in building real-world conversational agents. In
the context of this task, the Multimodality dimension is obtained by adding various types
of interaction channels between the human user and the Multimodal Dialogue System,
e.g., visual (image, video), verbal (speech, tone), vision (gaze, emotion, gesture, posture),
physiological signal (blood pressure, pulse). Although support for different languages is
widely investigated in the classic, text-only dialog generation systems, most studies in the
area of visual-based dialog generation tend to focus on a single language rather than on
multilingual approaches. As the majority of the Dialogue Generation solutions do not offer
explicit control, this would be an open research line to be further investigated in this field.

From the previous main take-away messages, there is no doubt that NNLG has a direct
applicability in many relevant tasks for which progress has improved in the recent years.
However, concerning the dimensions studied in this survey, there is still some room for
improvement that opens future research lines to be investigated with the purpose of allowing
these applications go in the direction towards integrating an holistic perspective with respect
to multilinguality, multimodality, learning strategies and controllability.
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Sjöblom, E., Creutz, M., & Aulamo, M. (2018). Paraphrase detection on noisy subtitles
in six languages. In Proceedings of the 2018 EMNLP Workshop W-NUT: The 4th
Workshop on Noisy User-generated Text, pp. 64–73.

Smith, E. M., Gonzalez-Rico, D., Dinan, E., & Boureau, Y. (2020). Controlling style in
generated dialogue. CoRR, abs/2009.10855.

Song, S., Huang, H., & Ruan, T. (2019). Abstractive text summarization using lstm-cnn
based deep learning. Multimedia Tools Appl., 78 (1), 857–875.

Specia, L., Frank, S., Sima’an, K., & Elliott, D. (2016). A Shared Task on Multimodal
Machine Translation and Crosslingual Image Description. In Proceedings of the First
Conference on Machine Translation, WMT 2016, colocated with ACL 2016, pp. 543–
553, Berlin, Germany.

Srinivasan, T., Sanabria, R., & Metze, F. (2019). Analyzing utility of visual context in multi-
modal speech recognition under noisy conditions. In arXiv preprint arXiv:1907.00477.

71
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