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$18B into starting a nonprofit research effort - OpenAl just to "keep an eye on it"!

Deep learning recently returned to the he: z =
140n AlphaGo program crushed Lee Facebook, Google, Amazon, Nvidia, Shopify and others are charging full steam at
ranking Go players in the word. Googleha Al and even open sourcing it! So what is all the Al ruckus about? bsube!
learning and AlphaGo is just their latest di
the news. Google’s search engine, voice recognition system and self-
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ve Officer Mark Zuckerberg

)sion in AL NIPS was where Facebook Chief Execu
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What is deep Iearnmg

“Deep Iearr?i‘?})g allows computational m
are composgal of multiple processmg EW
learn repréSentations of data with* multlple
levels of abstra;uon.

— Yann LeCun, Yoshua Bengio and Geoff Hinton

Y.LeCun, Y. Bengio, G. Hinton, "Deep Leaming", Nature, Vol. 521, 28May 2015
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Tutorial objectives

 Basics of training deep neural networks

» Good understanding of Convolutional and Recurrent Networks
A short overview about the future of deep learning

» Focus will especially be on computer vision applications
* We expect basic knowledge of machine learning and/or computer vision
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Agenda

« Part I: History and Motivations
 Part ll: Training Neural Networks

A short break

 Part lll: Convolutional Neural Networks (ConvNets)
» Part IV: Recurrent Neural Networks (RNNs)

 Part V: Concluding remarks



History and
Motivations




1943 — 20006: A Prehistory of Deep Learning
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* First computational model
* Neurons as logic gates (AND, OR, NOT)

* A neuron model that sums binary inputs
and outputs a 1 if the sum exceeds a

certain threshold value, and otherwise s
outputs a0 i
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1958: Frank Rosenblatt’s Perceptron

« A computational model of a single neuron
» Solves a binary classification problem

« Simple training algorithm

* Built using specialized hardware

xweik
X

y welonty —> —> output
bias

F. Rosenblatt, “The perceptron: A probabilistic model for information storage and organization in the brain”, Psychological Review, Vol. 65, 1958 ¢




% PARRSLAB

1969 Marvin Minsky and Seymour Papert

“No machine can learn to recognize X unless it
possesses, at least potentially, some scheme for

representing X.” (p. xiii)

» Perceptrons can only represent
linearly separable functions.
—such as XOR Problem

« Wrongly attributed as the reason behind the Al winter,
a period of reduced funding and interest in Al research

O

A

A

v

A

O Perceptrons

10
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1

-‘I 9 9 O S ——
Dees and How 10 Do It

= . — /T 02
« Multi-layer perceptrons can theoretically learn ‘\Eimajt}; w2 e

any function (Cybenko, 1989; Hornik, 1991) —>Q£jj i < _;”E;
Id 04/ \i\J\/ ﬂ
_’(u}a”f
* Training multi-layer perceptrons

— Back propagation (Rumelhart, Hinton, Williams, 1986) ..
— Backpropagation through time (BPTT) (Werbos, 1988) #s

* New neural architectures
— Convolutional neural nets (LeCun et al., 1989)

— Long-short term memory networks (LSTM) =
(Schmidhuber, 1997)

W/

11
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Why it failled then

« Too many parameters to learn from few labeled examples.
 “I know my features are better for this task”.

* Non-convex optimization”? No, thanks.

 Black-box model, no interpretability.

* Very slow and inefficient
» Overshadowed by the success of SVMs (Cortes and Vapnik, 1995)

Adapted from Joan Bruna 12



A major breakthrough in 2006
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2006 Breakthrough: Hinton and Salakhutdinov

Reducing the Dimensionality of g%‘
Data with Neural Networks B m-:

G. E. Hinton* and R. R. Salakhutdinov

High-dimensional data can be converted to low-dimensional codes by training a multilayer neural
network with a small central layer to reconstruct high-dimensional input vectors. Gradient descent
can be used for fine-tuning the weights in such “autoencoder” networks, but this works well only if
the initial weights are close to a good solution. We describe an effective way of initializing the
weights that allows deep autoencoder networks to learn low-dimensional codes that work much
better than principal components analysis as a tool to reduce the dimensionality of data.

Reducing the Dimensionality of
Data with Neural Networks

 The first solution to the vanishing gradient problem.

« Build the model in a layer-by-layer fashion using unsupervised learning

— The features in early layers are already initialized or “pretrained” with some suitable
features (weights).

— Pretrained features in early layers only need to be adjusted slightly during supervised
learning to achieve good results.

G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with neural networks”, Science, Vol. 313, 28 July 2006.

14



The 2012 revolution
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|mageNet Cha”enge Image classification

: Easiest classes
I M A G .E N E T Large Scale Vlsual red fox (100) hen-of-the-woods (100) ibex (100)  goldfinch (100) flat-coated retriever (100)
Recognition Challenge (ILSVRC) E - ﬁ -'
—1.2M training images with 1K -
tiger (100) hamster (100) porcupine (100) stmgray(100) Blenheim spaniel (100)

categories
—Measure top-5 classification error ; -'; N

Hardest classes

muzzle (71) hatchet (68) water bottle (68) velvet (68) loupe (66)
Output Output ¥ >
Scale Scale
T-shirt T-shirt
‘/ Giant panda e ‘ |
Drumstick Drumstick hook (66) spotlight (66) ladle (65) restaurant (64) letter opener (59)
Mud turtle Mud turtle - B '

J.Deng, WeiDong, R. Socher, L.-J. Li, K. Liand L. Fei-Fei, “ImageNet: A Large-Scale Hierarchica Image Database”, CVPR 2009.
O. Russakovsky etal., “lmageNet Large Scale Visual Recognition Challenge”, Int. J. Comput. Vis.,, Vol. 115, Issue 3, pp 211-252,2015. 16
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ILSVRC 2012 Competition

2012 Teams %Error N 3‘}3\ w ) --‘{] E\ K]
5 . " i | |
Supervision (Toronto) 15.3 J =l = 3' : 19 192 138 2078 \ / 2038 dense
2 y ) 13 13 13
ISI (Tokyo) 26.1 x R 3
224 5l , ] 3] s { '

VGG (Oxford) 26.9 | ‘] TR G\ - [ s

\ \ 3

11 i ) 192 192 128 Max L] L] o
XRCE/INRIA 27.0 2\ i N pooling 207 2048

Yof 4 pooling pooling

UVA (Amsterdam) 29.6 3 a8
INRIA/LEAR 334

* The success of AlexNet, a deep convolutional network
— 7 hidden layers (not counting some max pooling layers)
— 60M parameters

 Combined several tricks

— Rel U activation function, data augmentation, dropout

A. Krizhevsky, |. Sutskever, G.E. Hinton “ImageNet Classification with Deep Convolutional Neural Networks”, NIPS 2012

17



2012 — now
A Cambrian explosion in deep learning
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Game Playing

AUDIO EEEUEDNE
cm MAI
(ENNI0 MORRICONE)

i“: AR

Audio Generation

Je suis étudiant —

suis étudiant

Machine Translation

| am a student — Je

Genomics

And many more...

Robo’ucs

Amodei et al., "Deep Speech 2: End-to-End
Speech Recognition in English and
Mandarin", In CoRR 2015

M.-T. Luong et al., "Effective Approaches
to Attention-based NeuralMachine
Translation", EMNLP 2015

M. Bojarski et al., “End to End Learning for
Self-Driving Cars”, In CoRR 2016

D. Silver et al., "Mastering the game of Go
with deep neural networks and tree
search", Nature 529, 2016

L. Pinto and A. Gupta, “Supersizing Self-
supervision: Learning to Grasp from 50K
Tries and 700 Robot Hours” ICRA2015

H. Y. Xiong et al., "The human splicing
code reveals new insights into the genetic
determinants of disease", Science 347,
2015

M. Ramona et al., "Capturing a Musician's
Groove: Generation of Realistic
Accompaniments from Single Song

Recordings", In IJCAI 2015 9



Why now"?



GLOBAL INFORMATION STORAGE CAPACITY
IN OPTIMALLY COMPRESSED BYTES

2007
ANALOG
19 EXABYTES

- Paper, film, audiotape and vinyl: 6%
- Analog videotapes (VHS, etc): 94% ANALOG A

SVMs
ConvNets dominate

1986 Developed NIPS
ANALOG : - :
2.6 EXABYTES :

- Portable media, flash drives: 2% DIGITAL V
- Portable hard disks: 2.4%
- CDs & Minidisks: 6.8%

- Computer Servers and Mainframes: 8.9%

- Digital Tape: 11.8%

- DVD/Blu-Ray: 22.8%

DIGITAL
0.02 EXABYTES 2002
“BEFINNING OF

=N i1}
@ .m THE DIGITAL AGE
S— L3

- PC Hard Disks: 44.5%  |(®)
123 Billion Gigabytes

- Others: < 1% (incl. Chip Cards, Memory Cards, Floppy Disks,

5 DIGITAL Mobile Phones, PDAs, Cameras/Camcorders, Video Games)

1% 3% 25% 94 %
Source: Hilbert, M., & Lopez, P. (2011). The World's Technological Capacity DIGITAL
to Store, Communicate, andCompute Information. Science, 332 (6025), 280 EXABYTES

60-65. martinhilbert.net/worldinfocapacity.html
Slide credit: Neil Lawrence
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Year

1994

1997

2005

2011

2014

2015

Breakthroughs in Al

Human-level spontaneous speech
recognition

IBM Deep Blue defeated Garry Kasparov

Google’s Arabic-and Chinese-to-English
translation

IBM Watsonbecame the world Jeopardy!
champion

Google’s GoogleNet object classification
at near-human performance

Google’s DeepMind achieved human
parity in playing 29 Atari games by learning
general control from video

Average No. of Years to Breakthrough:

Datasets vs. Algorithms

Datasets (First Available)

Spoken Wall Street Journal articles and other

texts (1991)

700,000 Grandmaster chess games, aka
“The Extended Book” (1991)

1.8 trillion tokens from Google Web and
News pages (collected in 2005)

8.6 million documents from Wikipedia,
Wiktionary, and Project Gutenberg (updated
in 2010)

ImageNet corpus of 1.5 million labeled
images and 1,000 object categories (2010)

Arcade Learning Environment dataset of over

50 Atarigames (2013)

3 years

Table credit: Quant Quanto

Algorithms (First
Proposed)

Hidden Markov Model
(1984)

Negascout planning
algorithm (1983)

Statistical machine
translation algorithm (1988)

Mixture-of-Experts (1991)

Convolutional Neural
Networks (1989)

Q-learning (1992)

18 years



GOOGLE DATACENTER ‘ STANFORD Al LAB | NVIDIA DGX-1
== | WORLD’S FIRST DEEP LEARNING SUPERCOMPUTER

. 170 TFLOPS FP16
| — | 8x Tesla P100 16GB
 S— NVLink Hybrid Cube Mesh

Accelerates Major Al Frameworks
Dual Xeon
7 TB SSD Deep Learning Cache

600 kWatts 3 GPU-Accelerated Servers | 4 kWatts |

1,000 CPU Servers
2,000 CPUs - 16,000 cores | §5 000,000 12 GPUs -+ 18,432 cores $33,000 Pt 100be. Guna 1 10008
i ‘ 3RU - 3200W
GPU Acg:elerator
CPU Optimized for TITAN
Optimized for Parallel Tasks -
Serial Tasks WESERENS ERENEEEN TITAN X ! it

uSEEBEES BE asa THE WORLD’S FASTEST GPU ‘
ll .= 8 Billion Transistors el
o8 | 3,072 CUDA Cores
e 7 TFLOPS SP / 0.2 TFLOPS DP

+ SENEEEEE NEEEENEE 12GB Memory

Slide credit: <€ANVIDIA.




10X GROWTH IN GPU COMPUTING

2008 2015
00§ FIIIIIIIIIIIIIiiiae il

AR SIRERC DXL YR YRC MEC IRC MRC IR TR JRE YRC IR A

CUDA Apps

60

Universites = TTETTTETSETST T Srf?fzms e
eaching
4,000
scasenic B EEEEEEEEEEEEEEIE R -
6,000 g F (O ) ) T T O R ) O O Y Y O ) ) O N O ) A O O (W)~ 450,000
Tests GPUS TEEEET TSR EEEEE DS EEETEN e ER EEREE e
77 e e e 54’000
o : SRR AR RS RR R R R AR R R R R RIRREEN Supercomputing
eraflops eraflops

Slide credit: <€ANVIDIA.
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Working ideas on how to train deep architectures

Dropout: A Simple Way to Prevent Neural Networks from

Overfitting
Nitish Srivastava NITISHQCS.TORONTO.EDU
Geoffrey Hinton HINTON@CS.TORONTO.EDU
Alex Krizhevsky KRIZQCS.TORONTO.EDU
Ilya Sutskever ILYA@QCS.TORONTO.EDU
Ruslan Salakhutdinov RSALAKHU@CS.TORONTO.EDU
Abstract

Deep neural nets with a large number of parameters are very powerful machine learning
systems. However, overfitting is a serious problem in such networks. Large networks are also
slow to use, making it difficult to deal with overfitting by combining the predictions of many
different large neural nets at test time. Dropout is a technique for addressing this problem.
The key idea is to randomly drop units (along with their connections) from the neural
network during training. This prevents units from co-adapting too much. During training,
dropout samples from an exponential number of different “thinned” networks. At test time,

 Better Learning Regularization (e.g. Dropout)

Souenal of Machine Lonesing Semearch 13 (3014) 1721568 Sabentod 11/13; Pobitabed €/14

Dropout: A Simple Way to Prevent Neural Networks from
Overfitting

Nitlsh Srivastava
Geoffrey Hinton

Alex Krizhevaky

Tya Sutskever

Ruslan Salakhutdinov
Depertavent of Computer Science

R 3202
o, MSS 5G{, Cenede

Editoe: Yoshua Benglo

Abstract

regularian” a fived-sized me
average the predictions parametens, weighting each

£9064 Xash Seivasta, Grofivey Hintn, Abex Krisbavaky, iys Sutuver and Rimben Salukbet i

N. Srivastava, G. Hinton, A. Krizhevsky, |. Sutskever, R. Salakhutdinov, “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”,

JMLR Vol. 15, No. 1,

25
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Working ideas on how to train deep architectures

Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift

Batch Normalization: Accelerating Deep Network Training by

Reducing Internal Covariate Shift S i o e
Abstract Unieg miné-batches of exarzples, as opponed 8 ase cuam-

Sergey loffe
Google Inc., sioffe@google.com

Abstract

Training Deep Neural Networks is complicated by the fact
that the distribution of each layer’s inputs changes during
training, as the parameters of the previous layers change.
This slows down the training by requiring lower learning
rates and careful parameter initialization, and makes it no-
toriously hard to train models with saturating nonlineari-
ties. We refer to this phenomenon as internal covariate
shift, and address the problem by normalizing layer in-
puts. Our method draws its strength from making normal-
ization a part of the model architecture and performing the
normalization for each training mini-batch. Batch Nor-

Christian Szegedy
Google Inc., szegedy@google.com

Using mini-batches of examples, as opposed to one exam-
ple at a time, is helpful in several ways. First, the gradient
of the loss over a mini-batch is an estimate of the gradient
over the training set, whose quality improves as the batch
size increases. Second, computation over a batch can be
much more efficient than m computations for individual
examples, due to the parallelism afforded by the modern
computing platforms.

While stochastic gradient is simple and effective, it
requires careful tuning of the model hyper-parameters,
specifically the learning rate used in optimization, as well
as the initial values for the model parameters. The train-
ing is complicated by the fact that the inputs to each layer

B of each layer's

e st tise, s helplud i several ways. Fiat the gradicet
018e low over & mini-Saich i a3 catimue of the radiest

traising, a5 the parameters of the previous layers chasge.
This slows dow e tnising by requirieg lower learning

soriculy hart o trmn exdels with saterasing eoalseari
ek, We sefer 1 this phesoeence as intermal covariste
AR 4nd addsess the peobicen by eormealizing lyer
s

g set, whone qulity isproves ss e bach
o imais. Socesd: giopiuton ot L0t ok B0
mach e eficieet than m competatioes for isdvidual
exampics, doc 10 the parallelisen alforded By the moders
coergutisg platfcees

Whike stoxchusic geafient is simpie and elfective. it
sequies cactel alng of e model Rypenpummcta,

evemaliestion for eack raising wini-bach. Baick Nor.

be less caretil abous iniializagion. 11 also acts a5 & regy-

times Sewes traising seps. and beats Be original model
by & sigeiicant marg. Using as essemble of baxh

(O sl changes 15 e mrwork pammcies gty 88
e network bevomes deeper

. The change in e disuitutions of layen’ inposs

preseats & prodlers becaase the layers seod % conting.
usly adugt 9 the new disribusos. When Be input dis-
widution 10 3 learning sysem changes, & is said 10 expers

we
result e ImageNet classifcation: seaching 49% 10p.5
validation eeroe (aed 45% lest ermor). exceeding the &
curacy of heman raters.

1 Introduction

Doep Jearning das dramarically advanced e sue of fhe
a ia vision. specch. and many ofer aress. Stochas.

wach as raomemtern (Sutkever e al. 2013) and Adugrad
(Duchi e 2. 2011) have boss used t0 achieve state of the
ant performance. SGO optimizes the parameters 6 of e
network, 10 ax 10 misimize the lows

T o

where x;_y is the Wrnining data set. With SGD, the trai.
n(;v\,\u\huum e 4t cach s3cp we cossider & mini

ep—— , 2000). This s rypcally
Dasuled via demsin adagraion (linsg. 2008). However,
eoe of covariate sl can be exientod beyoed Be
eaenicg syiem s & whole, 5 spply 15 s pans, such a5
s otk of & layer, Coesider a betwor ccarpetieg

£= E(Fi(4,8,),0;)

where Fy and F; aro arbitracy trassformations, sad $e
arameters 6,6, % o be learmed vo a4 1 misinize

¢ e lows £, Learning 6, can be viewod i if the inpuss
b xm Fiu,8)) are fod isto the s actwork

= Fyx, 85

For example, 8 gradiest descent sep

@ ¢ 0K (x,. 0;)
& -0,- 25 =8

3t o 0 stind-ame metwork F; it it x. These.

€ size m. The i basch is wiexd 0 ORON-  foce,

M&r‘*‘! of the loss feextion with respect 15 e
parancicrs. by compatisg.

 Better Optimization Conditioning (e.g. Batch Normalization)

Tween the Laising and test data - agply 1 training Be
sl merwork as well, As such i is advantageoss for e
isribation of x 4o remsaln fxed over Sme. Then, &, does

S. loffe, C. Szegedy, “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift”, In ICML 2015
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Working ideas on how to train deep architectures

Deep Residual Learning for Image Recognition

Kaiming He

Xiangyu Zhang

Shaoqing Ren Jian Sun

Microsoft Research
{kahe, v-xiangz, v-shren, jiansun} @microsoft.com

Abstract

Deeper neural networks are more difficult to train. We
present a residual learning framework to ease the training
of networks that are substantially deeper than those used
previously. We explicitly reformulate the layers as learn-
ing residual functions with reference to the layer inputs, in-
stead of learning unreferenced functions. We provide com-
prehensive empirical evidence showing that these residual
networks are easier to optimize, and can gain accuracy from
considerably increased depth. On the ImageNet dataset we
evaluate residual nets with a depth of up to 152 layers—8x
deeper than VGG nets [41] but still having lower complex-
ity. An ensemble of these residual nets achieves 3.57% error

 Better neural achitectures (e.g. Residual Nets)

" [ "w

g A
1 €
§ ‘g‘ 20-layer
% - o
:_EE_ 56-layer 7
g 20-layer
Dier.(let) )

Figure 1. Training error (left) and test error (right) on CIFAR-10
with 20-layer and 56-layer “plain” networks. The deeper network
has higher training error, and thus test error. Similar phenomena
on ImageNet is presented in Fig. 4.

greatly benefited from very deep models.
Driven by the significance of depth, a question arises: Is

Deep Residual Learning for Image Recognition

KaimingHe  Xiangyu Zhang

Shaoging Ren Jian Sun

Microsoft Rescarch
{kabe, v-xiangz, v-shren, flanssn) @ microsctt.com

Abstract

Deeper mewsal nevworks are meve difficull to rain. We
present a residial learning framework 1o ease the training
of nenworks dhar are substancially deeper than those used
previously. We explicisly reformulate the kayers as leam
img residual functions with reference to the kayer inpuis, in
stead of learming wnreferenced finctions. We provide com-
prehensive ewpirical evidence showing that these reridusl

considerably increased depeh. On the ImageNet dataset we
evaluste pesidwal nets wish a depth of up to 152 kayers—3x
deeper than VGG nets [41] but 34l having lower complex-
lty. An emsemble of these rexidual mets ackieves 3.57% errov
on the ImageNet 1est ser. This ressdt won the 131 place on the
ILSVRC 2015 classificasion rask. We also present analysis
on CIFAR:- 10 wish 100 and 1000 layers.

The depeh of represensations is of central inporiance
Sor many viswal recognition tasks. Solely due 1o our ex
tremely deep representations, we obsais G 28% relative im-
provement on the COCO object detection detaset. Deep
residuual nets are foundstions of our mbmissions ko ILSVRC
& COCO 2015 comperisions’, where we also wou the 15t
laces on the tusks of ImageNet detection, ImageNet focal-
izarion, COCO desection, and COCO segmentarion.

1. Introduction

Deep comolstions] beurad sesweeks (22, 21] bave led
10 & series of beeakthroughs for image classification (21,
50, 40} Deep networks naturally integrate bow/mid/igh.
level feansres. [30] and classifiers in an end-s0-end multi
layer fashion, and the “levels” of features can be enriched
by the number of stacked layers (depth). Recent evidence
141, &4 reveals that neeweek depth bs of crucial

and Be leading reselts (41, 44, 13, 16] oe e challesging
ImageNet dataset (16 all expioit “very deep” (41] models.
with a depeh of sixtecn [41] o sty [16). Masy oeber non
wivial visual recogrition tasks (8, 12. 7. 32, 27) have also

K. He, X. Zhang, S. Ren, J. Sun, “Deep Residual Learning for Image Recognition”, In CVPR 2016

Figare | Traising error (lefl) send est emoe (right) ca CIFAR- 10
with 20 Layer aend $6-ayer “plans” peweeka. The doeger setwork
ban bigher traising e, and thas st errox. Simeilar phemcrmen
o0 BmageNet is poesersed in g, 4

preatly benefited from very decp faodels.
Driven by the sigsificance of depeh, a question arises: s
learning bester metworks ax eary ax stacking more layers?
An cbstacke %0 answering this question was the sotorious
prodiem of vanibinglesplodieg geadients {1, 9], which
hamper convergence from the beginsisg. This problem,
bowever, bas been largely addressed by normalized initial
izatica (23,9, ¥7. 13) and intermodiate sormalization layers
[16], which with tezs of &
verging foe stochastic graficss descent (SGD) with back-
propagatice (22].

When deeper networks are able 1o start comverging, &
degradation problem has becs exposed: with the sctwork

ing errov, s roportod in {11, 42] and thoroughly verified by
st experiments. Fig. | shows & typical examgie
The f trainieg th

4l systerm are similarly casy %o optmize. Let us comider
allower architecture and its decper cousterpart et mids
mcee Layess cato f1. There exists & solesion by commrucrion
10 the decper model: the added layers ace identiry mappiag,
and the other layers are copied from the leamed shallower
medel. The existesce of this comstructed solution indicates
that a dosper model shoald produce po highes traiming erroe
than its shallower cousserpart, But experiments show Bat
Oue currens solvers o hand are ussble t find solusons that

27



SO what is deep learning?
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Three key ideas

* (Hierarchical) Compositionality

» End-to-End Learning

* Distributed Representations

Slide credit: Dhruv Batra 29
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Three key ideas

 (Hierarchical) Compositionality
— Cascade of non-linear transformations
— Multiple layers of representations

Slide credit: Dhruv Batra 30
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VISION

hand-crafted
features

Traditional Machine Learning
classifier

car
SIFT/HOG
fixed learned
m f -
il "| ‘ I MFCC classifier p
| fixed leamned
NLP
. . hand-crafted ,
This burrito place s your favorite o
isyummyand fun! I Bag-of-words classifier +

fixed learned Slide credit; Yann LeCun 31
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Hierarchical Compositionality
VISION

pixels = edge = texton =% motif =»part = object

SPEECH
sample =» S%eCtéal =» formant =% motif =»phone =» word
an
NLP

character = word =»NP/VP/.=» clause = sentence = story

Slide credit: Yann LeCun 32
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Building A Complicated Function

Given a library of simple functions

Composeintoa

—

complicate function

Slide credit: Yann LeCun 33



H_Il %PARRSLAB

Building A Complicated Function

Given a library of simple functions

cos(x)

Idea 1: Linear Combinations
Composeintoa * Boosting

‘ + Kernels

complicate function

f(z) = Z ;g;(T)

Slide credit: Yann LeCun 34



HTE %PARRSLAB

Building A Complicated Function
Given a library of simple functions

Idea 2: Compositions
Composeintoa * Deep Learning

— «  Grammar models

complicate function Scattering transforms...

f(x) = g1(g2(- .- (gn(2)...))

£ I e i e e i e g

Slide credit: Yann LeCun 35




HI == (@mnnsu\a

Deep Learning = Hierarchical Compositionality

Low-Level

Feature Feature Feature Classifier

Mid-Level High-LeveIl_’ Trainable | "Car

M.D. Zeiler and R. Fergus, “Visualizing and Understanding Convolutional Networks”, In ECCV 2014 Slide credit: YannLeCun 36
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Three key ideas

« End-to-End Learning
— Learning (goal-driven) representations
— Learning to feature extract

Slide credit: Dhruv Batra 37
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Traditional Machine Learning
VISION

hand-crafted
features

your favorite

ifi car
SIFT/HOG classifier
fixed learned
SPEECH
| hand-crafted
features c \'d & p\
MFCC classifier o
fixed learmed
NLP
, . hand-crafted ,
This burrito place features your favonte "
is yummy and fun! B eaes classifier

fixed learned Slide credit: Yann LeCun 38
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More accurate version
VISION “lLearned”

fixed unsupervised 1 supervised

fixed unsupervised | supervised

NLP

This burrito place
is yummy and fun!

1] 7

fixed unsupervised 1 supervised Slide credit: Yann LeCun

39
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Deep Learning = End-to-End Learning

VISION “Learned”

car
fixed unsupervised 1| supervised
SPEECH
Mixture of —
Gaussians \'d € p\
fixed unsupervised | supervised
NLP
This burrito place “ v

is yummy and fun!

fixed unsupervised | supervised Slide credit: Yann LeCun

40
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Three key ideas

» Distributed Representations
— No single neuron “encodes” everything
— Groups of neurons work together

Slide credit: Dhruv Batra 41
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Localist representations

* The simplest way to represent things with
neural networks is to dedicate one neuron to
each thing.

— Easy to understand.
— Easy to code by hand

» Often used to represent inputs to a net
— Easy to learn

* This is what mixture models do.
» Each cluster corresponds to one neuron

— Easy to associate with other representations or
responses.

» But localist models are very inefficient whenever
the data has componential structure.

Slide credit: Geoff Hinton

(a)

nopaen - (O O O O

l
0

@000
O} JOX@
OO0O@0O
OO0 @

Image credit: Moontae Lee 42
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Distributed Representations

« Each neuron must represent something, so this

must be a local representation. (b)
 Distributed representation means a many-to-
many relationship between two types of no peite

representation (such as concepts and neurons).
— Each concept is represented by many neurons

— Each neuron participates in the representation of
many concepts

1
local @ @ O @ = VR+HR+HE = ? O
Distributed @ @ O @ = V+H+E ~ Q

W

Slide credit: Geoff Hinton

O) JOX

Image credit: Moontae Lee 43



H.l]. e %PARRSLAB
Power of distributed representations!

Scene Classification

bedroom ﬁ !

mountain

» Possible internal representations:

-ovees - DA EERESE I

— Scene attributes Dl m ‘ éﬂ N

— Object parts ‘
S s R

— Textures
Simple elements & colors ~ Object part Object Scene

Slide credit: Bolei Zhou B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba “Object Detectors Emerge in Deep Scene CNNs”, ICLR 2015 44
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Three key ideas of deep learning

 (Hierarchical) Compositionality
— Cascade of non-linear transformations
— Multiple layers of representations

« End-to-End Learning
— Learning (goal-driven) representations
— Learning to feature extract

» Distributed Representations
— No single neuron “encodes” everything
— Groups of neurons work together

Slide credit: Dhruv Batra 45



