
Convolutional 
Neural Networks
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• Convolution = Spatial filtering

• Different filters (weights) reveal a different characteristics of the input.

2

Convolution
2-D Convolution

What does this convolution kernel do?

⇤
0 1 0
1 4 1

0 1 0

Roger Grosse and Nitish Srivastava CSC321 Lecture 11 Convolutional networks February 15, 2015 17 / 29

Discrete filtering in 2D
•  Same equation, one more index

–  now the filter is a rectangle you slide around over a grid of numbers

•  Usefulness of associativity
–  often apply several filters one after another: (((a * b1) * b2) * b3)
–  this is equivalent to applying one filter: a * (b1 * b2 * b3)

Slide credit: S. Marschner 
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• Convolution = Spatial filtering

• Different filters (weights) reveal a different characteristics of the input.

3

ConvolutionDiscrete filtering in 2D
•  Same equation, one more index

–  now the filter is a rectangle you slide around over a grid of numbers

•  Usefulness of associativity
–  often apply several filters one after another: (((a * b1) * b2) * b3)
–  this is equivalent to applying one filter: a * (b1 * b2 * b3)

Slide credit: S. Marschner 

2-D Convolution

What does this convolution kernel do?

⇤
0 -1 0
-1 4 -1

0 -1 0

Roger Grosse and Nitish Srivastava CSC321 Lecture 11 Convolutional networks February 15, 2015 19 / 29
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• Convolution = Spatial filtering

• Different filters (weights) reveal a different characteristics of the input.

4

ConvolutionDiscrete filtering in 2D
•  Same equation, one more index

–  now the filter is a rectangle you slide around over a grid of numbers

•  Usefulness of associativity
–  often apply several filters one after another: (((a * b1) * b2) * b3)
–  this is equivalent to applying one filter: a * (b1 * b2 * b3)

Slide credit: S. Marschner 

2-D Convolution

What does this convolution kernel do?

⇤
1 0 -1
2 0 -2

1 0 -1

Roger Grosse and Nitish Srivastava CSC321 Lecture 11 Convolutional networks February 15, 2015 20 / 29
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• A neural network model that consists of a sequence of local & translation 
invariant layers
−Many identical copies of the same neuron: Weight/parameter sharing 
−Hierarchical feature learning

5

CNNs - A review

4

Review

c1 c2 c3 c4 c5 f6 f7 f8

w1 w2 w3 w4 w5 w6 w7 w8

bike

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep 
convolutional neural networks. In Proc. NIPS, 2012.

Image credit: Andrea Vedaldi
AlexNet
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• Neurocognitron model by Fukushima (1980)
• The first convolutional neural network (CNN) model
• so-called “sandwich” architecture 
−simple cells act like filters
−complex cells perform pooling

• Difficult to train
−No backpropagation yet

6

CNNs - A bit of history
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CNNs - A bit of history
• Gradient-based learning applied to document recognition 

[LeCun, Bottou, Bengio, Haffner 1998] 
• LeNet-5 model 

INPUT 
32x32

Convolutions SubsamplingConvolutions

C1: feature maps 
6@28x28

Subsampling

S2: f. maps
6@14x14

S4: f. maps 16@5x5
C5: layer
120

C3: f. maps 16@10x10

F6: layer
 84

Full connection
Full connection

Gaussian connections

OUTPUT
 10
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• A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with 
deep convolutional neural networks. In Proc. NIPS, 2012. 
• AlexNet model

8

CNNs - A bit of history
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A sequence of local & shift invariant layers

Convolutional Neural Network (CNN) 5

✱

Example: convolution layer

filter bank Finput data x output data y
Image credit: Andrea Vedaldi

• Learn a filter bank (a set of filters) once 
• Use them over the input data 

to extract features

9

Convolutional layer
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• There is a vector of feature channels (e.g. RGB) at each spatial location 
(pixel). 

10

Data = 3D Tensor
 There is a vector of feature channels (e.g. RGB) at each spatial location (pixel).

Data = 3D tensors 6

H

W

=

c = 1 c = 2 c = 3

channels

=3D  
tensor H

C

W

Slide credit: Andrea Vedaldi
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• Each filter acts on multiple input channels 

11

Convolution with 3D filters 
Each filter acts on multiple input channels

Convolution with 3D filters 7

Σ

x y

FLocal 
Filters look locally  
 
 
Translation invariant  
Filters act the same  
everywhere

Slide credit: Andrea Vedaldi

Local
Filters look locally

Translation invariant
Filters act the same
everywhere
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12

Convolutional Layer

Slide credit: Andrej Karpathy

32

32

3

5x5x3 filter

32x32x3 input

Convolve the filter with the input
i.e. “slide over the image spatially, 
computing dot products”
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13

Convolutional Layer

Slide credit: Andrej Karpathy

32

32

3

32x32x3 input
5x5x3 filter

1 number: 
the result of taking a dot product between the 
filter and a small 5x5x3 chunk of the input
(i.e. 5*5*3 = 75-dimensional dot product + bias)
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14

Convolutional Layer

Slide credit: Andrej Karpathy

32

32

3

32x32x3 input
5x5x3 filter

convolve (slide) over all spatial 
locations

activation map

1

28

28
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15

Convolutional Layer

Slide credit: Andrej Karpathy

32

32

3

32x32x3 input
5x5x3 filter

convolve (slide) over all spatial 
locations

activation maps

1

28

28

consider a second, green filter
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• Multiple filters produce multiple output channels 
• For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

16

Convolutional Layer

Slide credit: Andrej Karpathy

32

32

3

Convolutional Layer

activation maps

6

28

28

We stack these up to get an output of size 28x28x6.
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• The basic blueprint: The sandwich architecture
• Stack multiple layers of convolutions 

17

Linear / non-linear chainsThe basic blueprint of most architectures

Linear / non-linear chains 9

x

Σ

Σ

y

S

S

Σ S …

filtering ReLU filtering 
& downsampling

ReLU …

Slide credit: Andrea Vedaldi
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• Local receptive field
• Each column of hidden units 

looks at a different input patch

18

Convolutional layers
Local receptive field

Convolutional layers 37

input  
image

features

receptive field

feature component

Slide credit: Andrea Vedaldi
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• Hierarchical layer structure allows to learn hierarchical filters (features).

19

Feature Learning

Slide credit: Andrej Karpathy
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• Hierarchical layer structure allows to learn hierarchical filters (features).

20

Feature Learning

Slide credit: Yann LeCun
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• makes the representations smaller 
and more manageable 
• operates over each activation map 

independently:
• Max pooling, average pooling, etc.

21

Pooling layer

Slide credit: Andrej Karpathy

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice
x

y

max pool with 2x2 
filters and stride 2 6 8

3 4
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• contains neurons that connect to the entire input volume, as in ordinary Neural 
Networks

22

Fully connected layer

22Slide credit: Andrej Karpathy
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• Global receptive field
• Each hidden unit looks at 

the entire image 

23

Global receptive field

Fully connected layers 38

fully-connected

class predictions

fully-connected

fully-connected

Fully connected layers

Slide credit: Andrea Vedaldi
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Comparing the receptive fields

Convolutional vs Fully Connected 39

Responses are spatially selective, 
can be used to localize things.

Responses are global, do not 
characterize well position

Which one is  
more useful for  

pixel level labelling?

Downsampling filters Upsampling filters

• Convolutional layers: 
Responses are spatially selective, 
can be used to localize things. 

• Fully connected 
layers:
Responses are global,
do not characterize 
well position 

24

Convolutional vs Fully connected

Comparing the receptive fields

Convolutional vs Fully Connected 39

Responses are spatially selective, 
can be used to localize things.

Responses are global, do not 
characterize well position

Which one is  
more useful for  

pixel level labelling?

Downsampling filters Upsampling filters

Slide credit: Andrea Vedaldi
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Fully-connected layer = large filter 40

F(k)

W ⨉ H ⨉ C

K

w(k)
W ⨉ H ⨉ C ⨉ K

1 ⨉ 1 ⨉ K

✱
=

• Fully connected layer can 
be interpreted as a very large 
filter who spans the whole 
input data

25

Fully connected layer = large filter 

Slide credit: Andrea Vedaldi
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• Proposed for pixel-level labeling (e.g. semantic segmentation)

26

Fully-convolutional neural networks
Fully-convolutional neural networks 41

class predictions

J. Long, E. Shelhamer, and T. Darrell. Fully convolutional models for semantic segmentation. In Proc. CVPR, 2015

Slide credit: Andrea Vedaldi
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• ConvNetJS demo: training on CIFAR-10
• http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

27

CNN Demo
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• From LeNet (1998) to ResNet (2015)

28

CNNs - Years of progress
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How deep is enough?

Convolution
5x5/1, 20

Activation
tanh

20x24x24

Pooling
max, 2x2/2

20x24x24

Convolution
5x5/1, 50

20x12x12

Activation
tanh

50x8x8

Pooling
max, 2x2/2

50x8x8

Flatten

50x4x4

FullyConnected
500

800

Activation
tanh

500

FullyConnected
10

500

SoftmaxOutput

10

LeNet (1998)
2 convolutional layers
2 fully connected layers
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30

How deep is enough?

Convolution
5x5/1, 20

Activation
tanh

20x24x24

Pooling
max, 2x2/2

20x24x24

Convolution
5x5/1, 50

20x12x12

Activation
tanh

50x8x8

Pooling
max, 2x2/2

50x8x8

Flatten

50x4x4

FullyConnected
500

800

Activation
tanh

500

FullyConnected
10

500

SoftmaxOutput

10

LeNet (1998)
2 convolutional layers
2 fully connected layers

Convolution
11x11/4, 96

Activation
relu

96x54x54

Pooling
max, 3x3/2

96x54x54

LRN

96x27x27

Convolution
5x5/1, 256

96x27x27

Activation
relu

256x27x27

Pooling
max, 3x3/2

256x27x27

LRN

256x13x13

Convolution
3x3/1, 384

256x13x13

Activation
relu

384x13x13

Convolution
3x3/1, 384

384x13x13

Activation
relu

384x13x13

Convolution
3x3/1, 256

384x13x13

Activation
relu

256x13x13

Pooling
max, 3x3/2

256x13x13

Flatten

256x6x6

FullyConnected
4096

9216

Activation
relu

4096

Dropout

4096

FullyConnected
4096

4096

Activation
relu

4096

Dropout

4096

FullyConnected
2

4096

SoftmaxOutput

2

AlexNet (2012)
5 convolutional layers
3 fully connected layers
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How deep is enough?
LeNet (1998) AlexNet (2012) VGGNet-M (2013)

Convolution
3x3/1, 64

Activation
relu

64x224x224

Pooling
max, 2x2/2

64x224x224

Convolution
3x3/1, 128

64x112x112

Activation
relu

128x112x112

Pooling
max, 2x2/2

128x112x112

Convolution
3x3/1, 256

128x56x56

Activation
relu

256x56x56

Convolution
3x3/1, 256

256x56x56

Activation
relu

256x56x56

Pooling
max, 2x2/2

256x56x56

Convolution
3x3/1, 512

256x28x28

Activation
relu

512x28x28

Convolution
3x3/1, 512

512x28x28

Activation
relu

512x28x28

Pooling
max, 2x2/2

512x28x28

Convolution
3x3/1, 512

512x14x14

Activation
relu

512x14x14

Convolution
3x3/1, 512

512x14x14

Activation
relu

512x14x14

Pooling
max, 2x2/2

512x14x14

Flatten

512x7x7

FullyConnected
4096

25088

Activation
relu

4096

Dropout

4096

FullyConnected
4096

4096

Activation
relu

4096

Dropout

4096

FullyConnected
2

4096

SoftmaxOutput

2

Convolution
5x5/1, 20

Activation
tanh

20x24x24

Pooling
max, 2x2/2

20x24x24

Convolution
5x5/1, 50

20x12x12

Activation
tanh

50x8x8

Pooling
max, 2x2/2

50x8x8

Flatten

50x4x4

FullyConnected
500

800

Activation
tanh

500

FullyConnected
10

500

SoftmaxOutput

10

Convolution
11x11/4, 96

Activation
relu

96x54x54

Pooling
max, 3x3/2

96x54x54

LRN

96x27x27

Convolution
5x5/1, 256

96x27x27

Activation
relu

256x27x27

Pooling
max, 3x3/2

256x27x27

LRN

256x13x13

Convolution
3x3/1, 384

256x13x13

Activation
relu

384x13x13

Convolution
3x3/1, 384

384x13x13

Activation
relu

384x13x13

Convolution
3x3/1, 256

384x13x13

Activation
relu

256x13x13

Pooling
max, 3x3/2

256x13x13

Flatten

256x6x6

FullyConnected
4096

9216

Activation
relu

4096

Dropout

4096

FullyConnected
4096

4096

Activation
relu

4096

Dropout

4096

FullyConnected
2

4096

SoftmaxOutput

2
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How deep is enough?
LeNet (1998) AlexNet (2012) VGGNet-M (2013)

Convolution
3x3/1, 64

Activation
relu

64x224x224

Pooling
max, 2x2/2

64x224x224

Convolution
3x3/1, 128

64x112x112

Activation
relu

128x112x112

Pooling
max, 2x2/2

128x112x112

Convolution
3x3/1, 256

128x56x56

Activation
relu

256x56x56

Convolution
3x3/1, 256

256x56x56

Activation
relu

256x56x56

Pooling
max, 2x2/2

256x56x56

Convolution
3x3/1, 512

256x28x28

Activation
relu

512x28x28

Convolution
3x3/1, 512

512x28x28

Activation
relu

512x28x28

Pooling
max, 2x2/2

512x28x28

Convolution
3x3/1, 512

512x14x14

Activation
relu

512x14x14

Convolution
3x3/1, 512

512x14x14

Activation
relu

512x14x14

Pooling
max, 2x2/2

512x14x14

Flatten

512x7x7

FullyConnected
4096

25088

Activation
relu

4096

Dropout

4096

FullyConnected
4096

4096

Activation
relu

4096

Dropout

4096

FullyConnected
2

4096

SoftmaxOutput

2

Convolution
5x5/1, 20

Activation
tanh

20x24x24

Pooling
max, 2x2/2

20x24x24

Convolution
5x5/1, 50

20x12x12

Activation
tanh

50x8x8

Pooling
max, 2x2/2

50x8x8

Flatten

50x4x4

FullyConnected
500

800

Activation
tanh

500

FullyConnected
10

500

SoftmaxOutput

10

Convolution
11x11/4, 96

Activation
relu

96x54x54

Pooling
max, 3x3/2

96x54x54

LRN

96x27x27

Convolution
5x5/1, 256

96x27x27

Activation
relu

256x27x27

Pooling
max, 3x3/2

256x27x27

LRN

256x13x13

Convolution
3x3/1, 384

256x13x13

Activation
relu

384x13x13

Convolution
3x3/1, 384

384x13x13

Activation
relu

384x13x13

Convolution
3x3/1, 256

384x13x13

Activation
relu

256x13x13

Pooling
max, 3x3/2

256x13x13

Flatten

256x6x6

FullyConnected
4096

9216

Activation
relu

4096

Dropout

4096

FullyConnected
4096

4096

Activation
relu

4096

Dropout

4096

FullyConnected
2

4096

SoftmaxOutput

2

GoogLeNet (2014)

Convolution
7x7/2, 64

Activation
relu

64x112x112

Pooling
max, 3x3/2

64x112x112

Convolution
1x1/1, 64

64x56x56

Activation
relu

64x56x56

Convolution
3x3/1, 192

64x56x56

Activation
relu

192x56x56

Pooling
max, 3x3/2

192x56x56

Convolution
1x1/1, 64

192x28x28

Activation
relu

64x28x28

Convolution
1x1/1, 96

192x28x28

Activation
relu

96x28x28

Convolution
3x3/1, 128

96x28x28

Activation
relu

128x28x28

Convolution
1x1/1, 16

192x28x28

Activation
relu

16x28x28

Convolution
5x5/1, 32

16x28x28

Activation
relu

32x28x28

Pooling
max, 3x3/1

192x28x28

Convolution
1x1/1, 32

192x28x28

Activation
relu

32x28x28

Concat

64x28x28 128x28x28 32x28x28 32x28x28

Convolution
1x1/1, 128

256x28x28

Activation
relu

128x28x28

Convolution
1x1/1, 128

256x28x28

Activation
relu

128x28x28

Convolution
3x3/1, 192

128x28x28

Activation
relu

192x28x28

Convolution
1x1/1, 32

256x28x28

Activation
relu

32x28x28

Convolution
5x5/1, 96

32x28x28

Activation
relu

96x28x28

Pooling
max, 3x3/1

256x28x28

Convolution
1x1/1, 64

256x28x28

Activation
relu

64x28x28

Concat

128x28x28 192x28x28 96x28x28 64x28x28

Pooling
max, 3x3/2

480x28x28

Convolution
1x1/1, 192

480x14x14

Activation
relu

192x14x14

Convolution
1x1/1, 96

480x14x14

Activation
relu

96x14x14

Convolution
3x3/1, 208

96x14x14

Activation
relu

208x14x14

Convolution
1x1/1, 16

480x14x14

Activation
relu

16x14x14

Convolution
5x5/1, 48

16x14x14

Activation
relu

48x14x14

Pooling
max, 3x3/1

480x14x14

Convolution
1x1/1, 64

480x14x14

Activation
relu

64x14x14

Concat

192x14x14 208x14x14 48x14x14 64x14x14

Convolution
1x1/1, 160

512x14x14

Activation
relu

160x14x14

Convolution
1x1/1, 112

512x14x14

Activation
relu

112x14x14

Convolution
3x3/1, 224

112x14x14

Activation
relu

224x14x14

Convolution
1x1/1, 24

512x14x14

Activation
relu

24x14x14

Convolution
5x5/1, 64

24x14x14

Activation
relu

64x14x14

Pooling
max, 3x3/1

512x14x14

Convolution
1x1/1, 64

512x14x14

Activation
relu

64x14x14

Concat

160x14x14 224x14x14 64x14x14 64x14x14

Convolution
1x1/1, 128

512x14x14

Activation
relu

128x14x14

Convolution
1x1/1, 128

512x14x14

Activation
relu

128x14x14

Convolution
3x3/1, 256

128x14x14

Activation
relu

256x14x14

Convolution
1x1/1, 24

512x14x14

Activation
relu

24x14x14

Convolution
5x5/1, 64

24x14x14

Activation
relu

64x14x14

Pooling
max, 3x3/1

512x14x14

Convolution
1x1/1, 64

512x14x14

Activation
relu

64x14x14

Concat

128x14x14 256x14x14 64x14x14 64x14x14

Convolution
1x1/1, 112

512x14x14

Activation
relu

112x14x14

Convolution
1x1/1, 144

512x14x14

Activation
relu

144x14x14

Convolution
3x3/1, 288

144x14x14

Activation
relu

288x14x14

Convolution
1x1/1, 32

512x14x14

Activation
relu

32x14x14

Convolution
5x5/1, 64

32x14x14

Activation
relu

64x14x14

Pooling
max, 3x3/1

512x14x14

Convolution
1x1/1, 64

512x14x14

Activation
relu

64x14x14

Concat

112x14x14 288x14x14 64x14x14 64x14x14

Convolution
1x1/1, 256

528x14x14

Activation
relu

256x14x14

Convolution
1x1/1, 160

528x14x14

Activation
relu

160x14x14

Convolution
3x3/1, 320

160x14x14

Activation
relu

320x14x14

Convolution
1x1/1, 32

528x14x14

Activation
relu

32x14x14

Convolution
5x5/1, 128

32x14x14

Activation
relu

128x14x14

Pooling
max, 3x3/1

528x14x14

Convolution
1x1/1, 128

528x14x14

Activation
relu

128x14x14

Concat

256x14x14 320x14x14 128x14x14 128x14x14

Pooling
max, 3x3/2

832x14x14

Convolution
1x1/1, 256

832x7x7

Activation
relu

256x7x7

Convolution
1x1/1, 160

832x7x7

Activation
relu

160x7x7

Convolution
3x3/1, 320

160x7x7

Activation
relu

320x7x7

Convolution
1x1/1, 32

832x7x7

Activation
relu

32x7x7

Convolution
5x5/1, 128

32x7x7

Activation
relu

128x7x7

Pooling
max, 3x3/1

832x7x7

Convolution
1x1/1, 128

832x7x7

Activation
relu

128x7x7

Concat

256x7x7 320x7x7 128x7x7 128x7x7

Convolution
1x1/1, 384

832x7x7

Activation
relu

384x7x7

Convolution
1x1/1, 192

832x7x7

Activation
relu

192x7x7

Convolution
3x3/1, 384

192x7x7

Activation
relu

384x7x7

Convolution
1x1/1, 48

832x7x7

Activation
relu

48x7x7

Convolution
5x5/1, 128

48x7x7

Activation
relu

128x7x7

Pooling
max, 3x3/1

832x7x7

Convolution
1x1/1, 128

832x7x7

Activation
relu

128x7x7

Concat

384x7x7 384x7x7 128x7x7 128x7x7

Pooling
avg, 7x7/1

1024x7x7

Flatten

1024x1x1

FullyConnected
2

1024

SoftmaxOutput

2
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How deep is enough?
How deep is enough? 15

AlexNet (2012)
VGG-M (2013)

VGG-VD-16 (2014)
GoogLeNet (2014)

ResNet 152 (2015)
ResNet 50 (2015)

152 convolutional layers

50 convolutional layers

16 convolutional layers Krizhevsky, I. Sutskever, and G. E. Hinton. 
ImageNet classification with deep convolutional 
neural networks. In Proc. NIPS, 2012. 

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. 
Reed, D. Anguelov, D. Erhan, V. Vanhoucke, 
and A. Rabinovich. Going deeper with 
convolutions. In Proc. CVPR, 2015. 

K. Simonyan and A. Zisserman. Very deep 
convolutional networks for large-scale image 
recognition. In Proc. ICLR, 2015.

K. He, X. Zhang, S. Ren, and J. Sun. Deep 
residual learning for image recognition. In Proc. 
CVPR, 2016.

Slide credit: Andrea Vedaldi



PARRSLAB

• 3 ⨉ more accurate in 3 years 

34

Accuracy
3 ⨉ more accurate in 3 years
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Speed

Remark: 101 ResNet layers same size/speed as 16 VGG-VD layers 
Reason: far fewer feature channels (quadratic speed/space gain) 
Moral: optimize your architecture 
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Model size
Num. of parameters is about the same
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• Do features extracted from the CNN generalize other tasks and 
datasets?
−Donahue et al. (2013), Chatfield et al. (2014), Razavian et al. (2014), Yosinski et 

al. (2014), etc.

• CNN activations as deep features
• Finetuning CNNs

37

Beyond CNNs
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CNN activations as deep features

Slide credit: Jason Yosinski
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CNN activations as deep features

Slide credit: Jason Yosinski
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CNN activations as deep features

Slide credit: Jason Yosinski

Zeiler et al., 2014

Layer 2 Layer 5
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CNN activations as deep features

Zeiler et al., 2014

Layer 2 Layer 5 Last Layer

Nguyen et al., 2014

Slide credit: Jason Yosinski
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CNNs as deep features

t-SNE feature visualizations on the ILSVRC-2012 DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition

(a) LLC (b) GIST (c) DeCAF1 (d) DeCAF6

Figure 1. This figure shows several t-SNE feature visualizations on the ILSVRC-2012 validation set. (a) LLC , (b) GIST, and features
derived from our CNN: (c) DeCAF1, the first pooling layer, and (d) DeCAF6, the second to last hidden layer (best viewed in color).

layer types and to execute pre-trained networks efficiently
without being restricted to a GPU (which in many cases
may hinder the deployment of trained models). Specif-
ically, we adopted open-source Python packages such as
numpy/scipy for efficient numerical computation, with
parts of the computation-heavy code implemented in C and
linked to Python. In terms of computation speed, our model
is able to process about 40 images per second with an 8-
core commodity machine when the CNN model is executed
in a minibatch mode.

Our implementation, decaf, will be publicly available1.
In addition, we will release the network parameters used in
our experiments to allow for out-of-the-box feature extrac-
tion without the need to re-train the large network2. This
also aligns with the philosophy of supervised transfer: one
may view the trained model as an analog to the prior knowl-
edge a human obtains from previous visual experiences,
which helps in learning new tasks more efficiently.

As the underlying architecture for our feature we adopt the
deep convolutional neural network architecture proposed
by Krizhevsky et al. (2012), which won the ImageNet
Large Scale Visual Recognition Challenge 2012 (Berg
et al., 2012) with a top-1 validation error rate of 40.7%.
3 We chose this model due to its performance on a difficult
1000-way classification task, hypothesizing that the activa-
tions of the neurons in its late hidden layers might serve
as very strong features for a variety of object recognition
tasks. Its inputs are the mean-centered raw RGB pixel in-

1
http://decaf.berkeleyvision.org/

2We note that although our CPU implementation allows one
to also train networks, that training of large networks such as the
ones for ImageNet may still be time-consuming on CPUs, and we
rely on our own implementation of the network by extending the
cuda-convnet GPU framework provided by Alex Krizhevsky
to train such models.

3The model entered into the competition actually achieved a
top-1 validation error rate of 36.7% by averaging the predictions
of 7 structurally identical models that were initialized and trained
independently. We trained only a single instance of the model;
hence we refer to the single model error rate of 40.7%.

tensity values of a 224⇥ 224 image. These values are for-
ward propagated through 5 convolutional layers (with pool-
ing and ReLU non-linearities applied along the way) and 3
fully-connected layers to determine its final neuron activ-
ities: a distribution over the task’s 1000 object categories.
Our instance of the model attains an error rate of 42.9% on
the ILSVRC-2012 validation set – 2.2% shy of the 40.7%
achieved by (Krizhevsky et al., 2012).

We refer to Krizhevsky et al. (2012) for a detailed discus-
sion of the architecture and training protocol, which we
closely followed with the exception of two small differ-
ences in the input data. First, we ignore the image’s orig-
inal aspect ratio and warp it to 256 ⇥ 256, rather than re-
sizing and cropping to preserve the proportions. Secondly,
we did not perform the data augmentation trick of adding
random multiples of the principle components of the RGB
pixel values throughout the dataset, proposed as a way of
capturing invariance to changes in illumination and color4.

3.2. Feature Generalization and Visualization

We visualized the model features to gain insight into the
semantic capacity of DeCAF and other features that have
been typically employed in computer vision. In particular,
we compare the features described in Section 3 with GIST
features (Oliva & Torralba, 2001) and LLC features (Wang
et al., 2010).

We visualize features in the following way: we run the t-
SNE algorithm (van der Maaten & Hinton, 2008) to find a
2-dimensional embedding of the high-dimensional feature
space, and plot them as points colored depending on their
semantic category in a particular hierarchy. We did this on
the validation set of ILSVRC-2012 to avoid overfitting ef-
fects (as the deep CNN used in this paper was trained only
on the training set), and also use an independent dataset,
SUN-397 (Xiao et al., 2010), to evaluate how dataset bias

4According to the authors, this scheme reduced their models’
test set error by over 1%, likely explaining much of our network’s
performance discrepancy.

LLC                                        GIST                        Conv-1 activations             Conv-6 activations

DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition, [Donahue et al.,’14]

DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition

(a) LLC (b) GIST (c) DeCAF1 (d) DeCAF6

Figure 1. This figure shows several t-SNE feature visualizations on the ILSVRC-2012 validation set. (a) LLC , (b) GIST, and features
derived from our CNN: (c) DeCAF1, the first pooling layer, and (d) DeCAF6, the second to last hidden layer (best viewed in color).

layer types and to execute pre-trained networks efficiently
without being restricted to a GPU (which in many cases
may hinder the deployment of trained models). Specif-
ically, we adopted open-source Python packages such as
numpy/scipy for efficient numerical computation, with
parts of the computation-heavy code implemented in C and
linked to Python. In terms of computation speed, our model
is able to process about 40 images per second with an 8-
core commodity machine when the CNN model is executed
in a minibatch mode.

Our implementation, decaf, will be publicly available1.
In addition, we will release the network parameters used in
our experiments to allow for out-of-the-box feature extrac-
tion without the need to re-train the large network2. This
also aligns with the philosophy of supervised transfer: one
may view the trained model as an analog to the prior knowl-
edge a human obtains from previous visual experiences,
which helps in learning new tasks more efficiently.

As the underlying architecture for our feature we adopt the
deep convolutional neural network architecture proposed
by Krizhevsky et al. (2012), which won the ImageNet
Large Scale Visual Recognition Challenge 2012 (Berg
et al., 2012) with a top-1 validation error rate of 40.7%.
3 We chose this model due to its performance on a difficult
1000-way classification task, hypothesizing that the activa-
tions of the neurons in its late hidden layers might serve
as very strong features for a variety of object recognition
tasks. Its inputs are the mean-centered raw RGB pixel in-

1
http://decaf.berkeleyvision.org/

2We note that although our CPU implementation allows one
to also train networks, that training of large networks such as the
ones for ImageNet may still be time-consuming on CPUs, and we
rely on our own implementation of the network by extending the
cuda-convnet GPU framework provided by Alex Krizhevsky
to train such models.

3The model entered into the competition actually achieved a
top-1 validation error rate of 36.7% by averaging the predictions
of 7 structurally identical models that were initialized and trained
independently. We trained only a single instance of the model;
hence we refer to the single model error rate of 40.7%.

tensity values of a 224⇥ 224 image. These values are for-
ward propagated through 5 convolutional layers (with pool-
ing and ReLU non-linearities applied along the way) and 3
fully-connected layers to determine its final neuron activ-
ities: a distribution over the task’s 1000 object categories.
Our instance of the model attains an error rate of 42.9% on
the ILSVRC-2012 validation set – 2.2% shy of the 40.7%
achieved by (Krizhevsky et al., 2012).

We refer to Krizhevsky et al. (2012) for a detailed discus-
sion of the architecture and training protocol, which we
closely followed with the exception of two small differ-
ences in the input data. First, we ignore the image’s orig-
inal aspect ratio and warp it to 256 ⇥ 256, rather than re-
sizing and cropping to preserve the proportions. Secondly,
we did not perform the data augmentation trick of adding
random multiples of the principle components of the RGB
pixel values throughout the dataset, proposed as a way of
capturing invariance to changes in illumination and color4.

3.2. Feature Generalization and Visualization

We visualized the model features to gain insight into the
semantic capacity of DeCAF and other features that have
been typically employed in computer vision. In particular,
we compare the features described in Section 3 with GIST
features (Oliva & Torralba, 2001) and LLC features (Wang
et al., 2010).

We visualize features in the following way: we run the t-
SNE algorithm (van der Maaten & Hinton, 2008) to find a
2-dimensional embedding of the high-dimensional feature
space, and plot them as points colored depending on their
semantic category in a particular hierarchy. We did this on
the validation set of ILSVRC-2012 to avoid overfitting ef-
fects (as the deep CNN used in this paper was trained only
on the training set), and also use an independent dataset,
SUN-397 (Xiao et al., 2010), to evaluate how dataset bias

4According to the authors, this scheme reduced their models’
test set error by over 1%, likely explaining much of our network’s
performance discrepancy.
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Transfer Learning with CNNs
Stability: Transfer learning

• a CNN trained on a (large enough) dataset generalizes 
to other visual tasks:

Figure 4. t-SNE map of 20, 000 Flickr test images based on features extracted from the last layer of an AlexNet trained with K=1, 000.
A full-resolution map is presented in the supplemental material. The inset shows a cluster of sports.

ing one-versus-all logistic loss: using a dictionary of K =

1, 000 words, such a model achieves a precision@10 of
16.43 (compared to 17.98 for multiclass logistic loss). We
surmise this is due to the problems one-versus-all logistic
loss has in dealing with class imbalance: because the num-
ber of negative examples is much higher than the number
of positive examples (for the most frequent class, more than
95.0% of the data is still negative), the rebalancing weight
in front of the positive term is very high, which leads to
spikes in the gradient magnitude that hamper SGD training.
We tried various reweighting schemes to counter this effect,
but nevertheless, multiclass logistic loss consistently out-
performed one-versus-all logistic loss in our experiments.

To investigate the performance of our models as a func-
tion of the amount of training data, we also performed ex-
periments in which we varied the Flickr training set size.
The lefthand side of Figure 2 presents the resulting learn-
ing curves for the AlexNet architecture with K = 1, 000.
The figure shows that there is a clear benefit of training on
larger datasets: the word prediction performance of the net-
works increases substantially when the training set is in-
creased beyond 1 million images (which is roughly the size
of Imagenet); for our networks, it only levels out after ⇠50

million images.
To illustrate the kinds of words for which our models

learn good representations, we show a high-scoring test im-
age for six different words in Figure 3. To obtain more in-
sight into the features learned by the models, we applied
t-SNE [51, 52] to features extracted from the penultimate
layer of an AlexNet trained on 1, 000 words. This produces
maps in which images with similar visual features are close
together; Figure 4 shows such a map of 20, 000 Flickr test
images. The inset shows a “sports” cluster that was formed
by the visual features; interestingly, it contains visually very
dissimilar sports ranging from baseball to field hockey, ice
hockey and rollerskating. Whilst all sports are grouped to-
gether, the individual sports are still clearly separable: the
model can capture this multi-level structure because the im-
ages sometimes occur with the word “sports” and some-

times with the name of the individual sport itself. A model
trained on classification datasets such as Pascal VOC is un-
likely to learn similar structure unless an explicit target tax-
onomy is defined (as in the Imagenet dataset). Our results
suggest that such taxonomies can be learned from weakly
labeled data instead.

4.2. Experiment 2: Transfer Learning

Experimental setup. To assess the quality of the visual fea-
tures learned by our models, we performed transfer-learning
experiments on seven test datasets comprising a range of
computer-vision tasks: (1) the MIT Indoor dataset [38],
(2) the MIT SUN dataset [55], (3) the Stanford 40 Actions
dataset [57], (4) the Oxford Flowers dataset [33], (5) the
Sports dataset [17], (6) the ImageNet ILSVRC 2014 dataset
[42], and (7) the Pascal VOC 2007 dataset [11]. We applied
the same preprocessing as before on all datasets: we resized
the images to 224⇥224 pixels, subtracted their mean pixel
value, and divided by their standard deviation.

Following [40], we compute the output of the penulti-
mate layer for an input image and use this output as a fea-
ture representation for the corresponding image. We eval-
uate features obtained from Flickr-trained networks as well
as Imagenet-trained networks, and we also perform exper-
iments where we combine both features by concatenating
them. We train L2-regularized logistic regressors on the
features to predict the classes corresponding to each of the
datasets. For all datasets except the Imagenet and Pascal
VOC datasets, we report classification accuracies on a sep-
arate, held-out test set. For Imagenet, we report classifica-
tion errors on the validation set. For Pascal VOC, we report
average precisions on the test set as is customary for that
dataset. As before, we use convolutional networks trained
on the Imagenet dataset as baseline. Additional details on
the setup of the transfer-learning experiments are presented
in the supplemental material.
Results. Table 3 presents the classification accuracies—
averaged over 10 runs—of logistic regressors on six datasets
for both fully supervised and weakly supervised feature-

Figure 6. t-SNE map of 10, 000 words based on their embeddings as learned by a weakly supervised convolutional network trained on the
Flickr dataset. Note that all the semantic information represented in the word embeddings is the result of observing that these words are
assigned to images with similar visual content (the model did not observe word co-occurrences during training). A full-resolution version
of the map is provided in the supplemental material.

K Query ! Response k = 1 k = 5 k = 10

English ! French 33.01 50.16 55.34
10, 000 French ! English 23.95 50.16 56.63

English ! French 12.30 22.24 26.50
100, 000 French ! English 10.11 18.78 23.44

Table 6. Precision@k of identifying the French counterpart of an
English word (and vice-versa) for two dictionary sizes, at three
different levels of k. Chance level (with k = 1) is 0.0032 for
K=10, 000 words and 0.00033 for K=100, 000 words. Higher
values are better.

English French English French

oas oea uzbekistan ouzbekistan
infrared infrarouge mushroom champignons
tomatoes tomates filmed serveur
bookshop librairie mauritania mauritanie

server apocalyptique pencils crayons

Table 7. Ten highest-scoring pairs of words, as measured by the
cosine similarity between the corresponding word embeddings.
Correct pairs of words are colored green, and incorrect pairs are
colored red according to the dictionary. The word “oas” is an ab-
breviation for the Organization of American States.

most similar word pairs, measured by the cosine similar-
ity between their word embeddings. These word pairs sug-
gest that models trained on Flickr data find correspondences
between words that have clear visual representations, such
as “tomatoes” or “bookshop”. Interestingly, the identified
English-French matches appear to span a broad set of do-
mains, including objects such as “pencils”, locations such
as “mauritania”, and concepts such as “infrared”.

5. Discussion and Future Work

This study demonstrates that convolutional networks can
be trained from scratch without any manual annotation and
shows that good features can be learned from weakly super-
vised data. Indeed, our models learn features that are nearly
on par with those learned from an image collection with
over a million manually defined labels, and achieve good
results on a variety of datasets. (Obtaining state-of-the-art
results requires averaging predictions over many crops and
models, which is outside the scope of this paper.) More-
over, our results show that weakly supervised models can
learn semantic structure from image-word co-occurrences.

In addition, our results lead to three main recommen-
dations for future work in learning models from weakly
supervised data. First, our results suggest that the best-
performing models on the Imagenet dataset are not opti-
mal for weakly supervised learning. We surmise that cur-
rent models have insufficient capacity for learning from the
complex Flickr dataset. Second, multi-class logistic loss
performs remarkably well in our experiments even though
it is not tailored to multi-label settings. Presumably, our
approximate multiclass loss works very well on large dic-
tionaries because it shares properties with losses known to
work well in that setting [31, 50, 53]. Third, it is essential
to sample data uniformly per class to learn good visual fea-
tures [2]. Uniform sampling per class ensures that frequent
classes in the training data do not dominate the learned fea-
tures, which makes them better suited for transfer learning.

In future work, we aim to combine our weakly su-
pervised vision models with a language model such as
word2vec [31] to perform, for instance, visual question an-
swering [3, 58]. We also intend to further investigate the
ability of our models to learn visual hierarchies, such as the
“sports” example in Section 4.2.

“Learning visual features from Large Weakly supervised Data”, [Joulin et al, ’15]17

Learning visual features from Large Weakly supervised Data, [Joulin et al.,’15] Slide credit: Joan Bruna
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• Train a new softmax classifier on top using the training images of the new dataset. 
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Slide credit: Andrej Karpathy

1. Train on 
Imagenet

2. Small dataset:
feature extractor

Freeze 
these

Train 
this

3. Medium dataset:
finetuning
more data = retrain more of the 
network (or all of it)

Freeze these

Train this

tip: use only ~1/10th of the original 
learning rate in finetuning top layer, 
and ~1/100th on intermediate layers
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Figure 4: (Left) Eight ILSVRC-2010 test images and the five labels considered most probable by our model.
The correct label is written under each image, and the probability assigned to the correct label is also shown
with a red bar (if it happens to be in the top 5). (Right) Five ILSVRC-2010 test images in the first column. The
remaining columns show the six training images that produce feature vectors in the last hidden layer with the
smallest Euclidean distance from the feature vector for the test image.

In the left panel of Figure 4 we qualitatively assess what the network has learned by computing its
top-5 predictions on eight test images. Notice that even off-center objects, such as the mite in the
top-left, can be recognized by the net. Most of the top-5 labels appear reasonable. For example,
only other types of cat are considered plausible labels for the leopard. In some cases (grille, cherry)
there is genuine ambiguity about the intended focus of the photograph.

Another way to probe the network’s visual knowledge is to consider the feature activations induced
by an image at the last, 4096-dimensional hidden layer. If two images produce feature activation
vectors with a small Euclidean separation, we can say that the higher levels of the neural network
consider them to be similar. Figure 4 shows five images from the test set and the six images from
the training set that are most similar to each of them according to this measure. Notice that at the
pixel level, the retrieved training images are generally not close in L2 to the query images in the first
column. For example, the retrieved dogs and elephants appear in a variety of poses. We present the
results for many more test images in the supplementary material.

Computing similarity by using Euclidean distance between two 4096-dimensional, real-valued vec-
tors is inefficient, but it could be made efficient by training an auto-encoder to compress these vectors
to short binary codes. This should produce a much better image retrieval method than applying auto-
encoders to the raw pixels [14], which does not make use of image labels and hence has a tendency
to retrieve images with similar patterns of edges, whether or not they are semantically similar.

7 Discussion

Our results show that a large, deep convolutional neural network is capable of achieving record-
breaking results on a highly challenging dataset using purely supervised learning. It is notable
that our network’s performance degrades if a single convolutional layer is removed. For example,
removing any of the middle layers results in a loss of about 2% for the top-1 performance of the
network. So the depth really is important for achieving our results.

To simplify our experiments, we did not use any unsupervised pre-training even though we expect
that it will help, especially if we obtain enough computational power to significantly increase the
size of the network without obtaining a corresponding increase in the amount of labeled data. Thus
far, our results have improved as we have made our network larger and trained it longer but we still
have many orders of magnitude to go in order to match the infero-temporal pathway of the human
visual system. Ultimately we would like to use very large and deep convolutional nets on video
sequences where the temporal structure provides very helpful information that is missing or far less
obvious in static images.

8

Classification (Krizhevsky et al., 2012) Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. arXiv 2015.
Shaoqing Ren, Kaiming He, Ross Girshick, & Jian Sun. “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”. NIPS 2015.

*the original image is from the COCO dataset

Object detection (Ren et al., 2015)
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Semantic Segmentation (Noh et al., 2015)

Input image Ground-truth FCN 

(a) Examples that our method produces better results than FCN [17].

(b) Examples that FCN produces better results than our method.

(c) Examples that inaccurate predictions from our method and FCN are improved by ensemble.

Figure 7. Example of semantic segmentation results on PASCAL VOC 2012 validation images. Note that the proposed method and FCN
have complementary characteristics for semantic segmentation, and the combination of both methods improves accuracy through ensemble.
Although CRF removes some noises, it does not improve quantitative performance of our algorithm significantly.

EDeconvNet+CRF 

(a) Examples that our method produces better results than FCN [17].

(b) Examples that FCN produces better results than our method.

(c) Examples that inaccurate predictions from our method and FCN are improved by ensemble.

Figure 7. Example of semantic segmentation results on PASCAL VOC 2012 validation images. Note that the proposed method and FCN
have complementary characteristics for semantic segmentation, and the combination of both methods improves accuracy through ensemble.
Although CRF removes some noises, it does not improve quantitative performance of our algorithm significantly.
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Figure 4. Comparison of accumulative precision and recall distribution of the baselines and our method. Left: Polo dataset. Right: TUD
dataset. Our method’s results concentrate towards higher precision/recall rate.

Method Mi-AP Mi-AR Ma-AP Ma-AR Avg-FP Avg-FN

E-SVM 33.7 29.5 49.5 33.0 2.3 2.4
HV+GC 24.9 42.9 41.6 51.9 2.3 2.4
Ours-S 57.5 57.4 61.2 63.5 0.7 1.3
Ours+S 62.6 56.9 64.8 64.5 0.3 1.5

Table 2. Performance comparison on TUD pedestrian dataset. See
the text for details.

knowing the right number of instances. And it is at the price
of having much lower macro average recall. On the other
hand, it is interesting to see ’HV+GC’ has a lower average
miss detection rate.

More detailed difference between ’HV+GC’ and
’Ours+S’ can be seen from the accumulative distribution
of the precision/recall rate per object in Figure 4. Our ap-
proach has more detections with higher precision and recall
rate, while the baselines are more uniformly distributed.

We show some examples of our results on the Polo
dataset in Figure 5. Those examples include multiple ob-
jects with large pose variation, mutual occlusion and novel
poses. Our method seems to be able to handle challenging
scenarios and achieve good instance level segmentation. We
also show the overlay of the shape mark on the objects and
their shape layout. Although sometimes the masks are not
closely aligned with object boundaries, the inferred masks
and layouts are largely correct.
TUD Pedestrian. The results on the TUD crossing pedes-
trian dataset are summarized in Table 2 and Figure 4. We
can see the same trend as in the Polo dataset. We also show
some of our results in Figure 6. Comparing with [17], our
performance is on par with the state of the art qualitatively.

5.3. Shape mask discovery
Our method can be used to discover new shape masks in

a large dataset [14]. In Figure 7, we show a set of exam-
ple shape masks that our model found from the test dataset.
They are similar to the original 10 shape masks but also
differs in some aspects. By accumulating different shape
and their layouts, our approach can be employed to learn a
better object detection model with weaker supervision. To
verify this, we add 20 more horse templates generated from
our algorithms and re-train an exemplar SVM with a total
of 30 examples. Then we re-evaluate the E-SVM baseline
and achieve 43.7% Mi-AP, 38.8% Mi-AR, 45.5% Ma-AP,
and 41.0% Ma-AR, which is significantly better than the

Figure 6. Example results on TUD dataset. Left: input images;
Middle: segmentation results; Right: overlay with template masks.

Figure 7. Examples of new shapes found by our method.

hand-labeled 10-template setting.

6. Conclusion
In this paper, we present an exemplar-based approach to

multiple instance segmentation, focusing on the challenging
problem of large pose variation and object occlusion. We
describe a CRF model that jointly captures object instance
shape, appearance and their occlusion and propose an ef-
ficient alternating algorithm to solve the MAP inference.
Our method is evaluated on new and existing datasets with
pixel-wise instance labeling, and the results demonstrate the
effectiveness of the proposed approach in comparison with
two baselines and qualitatively against the state of the art.
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learning methods such as Support Vector Machines, Prin-
cipal Component Analysis and Linear Discriminant Analy-
sis, have limited capacity to leverage large volumes of data,
deep neural networks have shown better scaling properties.

Recently, there has been a surge of interest in neu-
ral networks [19, 21]. In particular, deep and large net-
works have exhibited impressive results once: (1) they
have been applied to large amounts of training data and (2)
scalable computation resources such as thousands of CPU
cores [11] and/or GPU’s [19] have become available. Most
notably, Krizhevsky et al. [19] showed that very large and
deep convolutional networks [21] trained by standard back-
propagation [25] can achieve excellent recognition accuracy
when trained on a large dataset.

Face recognition state of the art Face recognition er-
ror rates have decreased over the last twenty years by three
orders of magnitude [12] when recognizing frontal faces in
still images taken in consistently controlled (constrained)
environments. Many vendors deploy sophisticated systems
for the application of border-control and smart biometric
identification. However, these systems have shown to be
sensitive to various factors, such as lighting, expression, oc-
clusion and aging, that substantially deteriorate their perfor-
mance in recognizing people in such unconstrained settings.

Most current face verification methods use hand-crafted
features. Moreover, these features are often combined
to improve performance, even in the earliest LFW con-
tributions. The systems that currently lead the perfor-
mance charts employ tens of thousands of image descrip-
tors [5, 7, 2]. In contrast, our method is applied directly
to RGB pixel values, producing a very compact yet sparse
descriptor.

Deep neural nets have also been applied in the past to
face detection [24], face alignment [27] and face verifica-
tion [8, 16]. In the unconstrained domain, Huang et al. [16]
used as input LBP features and they showed improvement
when combining with traditional methods. In our method
we use raw images as our underlying representation, and
to emphasize the contribution of our work, we avoid com-
bining our features with engineered descriptors. We also
provide a new architecture, that pushes further the limit of
what is achievable with these networks by incorporating 3D
alignment, customizing the architecture for aligned inputs,
scaling the network by almost two order of magnitudes and
demonstrating a simple knowledge transfer method once the
network has been trained on a very large labeled dataset.

Metric learning methods are used heavily in face ver-
ification, often coupled with task-specific objectives [26,
29, 6]. Currently, the most successful system that uses a
large data set of labeled faces [5] employs a clever transfer
learning technique which adapts a Joint Bayesian model [6]
learned on a dataset containing 99,773 images from 2,995
different subjects, to the LFW image domain. Here, in order

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1. Alignment pipeline. (a) The detected face, with 6 initial fidu-
cial points. (b) The induced 2D-aligned crop. (c) 67 fiducial points on
the 2D-aligned crop with their corresponding Delaunay triangulation, we
added triangles on the contour to avoid discontinuities. (d) The reference
3D shape transformed to the 2D-aligned crop image-plane. (e) Triangle
visibility w.r.t. to the fitted 3D-2D camera; darker triangles are less visible.
(f) The 67 fiducial points induced by the 3D model that are used to direct
the piece-wise affine warpping. (g) The final frontalized crop. (h) A new
view generated by the 3D model (not used in this paper).

to demonstrate the effectiveness of the features, we keep the
distance learning step trivial.

2. Face Alignment
Existing aligned versions of several face databases (e.g.

LFW-a [29]) help to improve recognition algorithms by pro-
viding a normalized input [26]. However, aligning faces
in the unconstrained scenario is still considered a difficult
problem that has to account for many factors such as pose
(due to the non-planarity of the face) and non-rigid expres-
sions, which are hard to decouple from the identity-bearing
facial morphology. Recent methods have shown successful
ways that compensate for these difficulties by using sophis-
ticated alignment techniques. These methods can use one
or more from the following: (1) employing an analytical
3D model of the face [28, 32, 14], (2) searching for sim-
ilar fiducial-points configurations from an external dataset
to infer from [4], and (3) unsupervised methods that find a
similarity transformation for the pixels [17, 15].

While alignment is widely employed, no complete phys-
ically correct solution is currently present in the context of
unconstrained face verification. 3D models have fallen out
of favor in recent years, especially in unconstrained envi-
ronments. However, since faces are 3D objects, done cor-
rectly, we believe that it is the right way. In this paper, we
describe a system that includes analytical 3D modeling of
the face based on fiducial points, that is used to warp a de-
tected facial crop to a 3D frontal mode (frontalization).

Similar to much of the recent alignment literature, our
alignment is based on using fiducial point detectors to direct
the alignment process. We use a relatively simple fiducial

Figure 2. Outline of the DeepFace architecture. A front-end of a single convolution-pooling-convolution filtering on the rectified input, followed by three
locally-connected layers and two fully-connected layers. Colors illustrate feature maps produced at each layer. The net includes more than 120 million
parameters, where more than 95% come from the local and fully connected layers.

very few parameters. These layers merely expand the input
into a set of simple local features.

The subsequent layers (L4, L5 and L6) are instead lo-
cally connected [13, 16], like a convolutional layer they ap-
ply a filter bank, but every location in the feature map learns
a different set of filters. Since different regions of an aligned
image have different local statistics, the spatial stationarity
assumption of convolution cannot hold. For example, ar-
eas between the eyes and the eyebrows exhibit very differ-
ent appearance and have much higher discrimination ability
compared to areas between the nose and the mouth. In other
words, we customize the architecture of the DNN by lever-
aging the fact that our input images are aligned. The use
of local layers does not affect the computational burden of
feature extraction, but does affect the number of parameters
subject to training. Only because we have a large labeled
dataset, we can afford three large locally connected layers.
The use of locally connected layers (without weight shar-
ing) can also be justified by the fact that each output unit of
a locally connected layer is affected by a very large patch of
the input. For instance, the output of L6 is influenced by a
74x74x3 patch at the input, and there is hardly any statisti-
cal sharing between such large patches in aligned faces.

Finally, the top two layers (F7 and F8) are fully con-
nected: each output unit is connected to all inputs. These
layers are able to capture correlations between features cap-
tured in distant parts of the face images, e.g., position and
shape of eyes and position and shape of mouth. The output
of the first fully connected layer (F7) in the network will be
used as our raw face representation feature vector through-
out this paper. In terms of representation, this is in con-
trast to the existing LBP-based representations proposed in
the literature, that normally pool very local descriptors (by
computing histograms) and use this as input to a classifier.

The output of the last fully-connected layer is fed to a
K-way softmax (where K is the number of classes) which
produces a distribution over the class labels. If we denote
by o

k

the k-th output of the network on a given input, the
probability assigned to the k-th class is the output of the
softmax function: p

k

= exp(o

k

)/

P
h

exp(o

h

).

The goal of training is to maximize the probability of
the correct class (face id). We achieve this by minimiz-
ing the cross-entropy loss for each training sample. If k

is the index of the true label for a given input, the loss is:
L = � log p

k

. The loss is minimized over the parameters
by computing the gradient of L w.r.t. the parameters and
by updating the parameters using stochastic gradient de-
scent (SGD). The gradients are computed by standard back-
propagation of the error [25, 21]. One interesting property
of the features produced by this network is that they are very
sparse. On average, 75% of the feature components in the
topmost layers are exactly zero. This is mainly due to the
use of the ReLU [10] activation function: max(0, x). This
soft-thresholding non-linearity is applied after every con-
volution, locally connected and fully connected layer (ex-
cept the last one), making the whole cascade produce highly
non-linear and sparse features. Sparsity is also encouraged
by the use of a regularization method called dropout [19]
which sets random feature components to 0 during training.
We have applied dropout only to the first fully-connected
layer. Due to the large training set, we did not observe sig-
nificant overfitting during training2.

Given an image I , the representation G(I) is then com-
puted using the described feed-forward network. Any feed-
forward neural network with L layers, can be seen as a com-
position of functions gl

�

. In our case, the representation is:
G(I) = g

F7
�

(g

L6
�

(...g

C1
�

(T (I, ✓

T

))...)) with the net’s pa-
rameters � = {C1, ..., F7} and ✓

T

= {x2d,
~

P ,~r} as de-
scribed in Section 2.

Normaliaztion As a final stage we normalize the fea-
tures to be between zero and one in order to reduce the sen-
sitivity to illumination changes: Each component of the fea-
ture vector is divided by its largest value across the training
set. This is then followed by L2-normalization: f(I) :=

¯

G(I)/|| ¯G(I)||2 where ¯

G(I)

i

= G(I)

i

/max(G

i

, ✏)

3.
Since we employ ReLU activations, our system is not in-
variant to re-scaling of the image intensities. Without bi-

2See the supplementary material for more details.
3✏ = 0.05 in order to avoid division by a small number.

Figure 8. Visualization of pose results on images from LSP. Each pose is represented as a stick figure, inferred from predicted joints.
Different limbs in the same image are colored differently, same limb across different images has the same color.

Figure 9. Visualization of pose results on images from FLIC. Meaning of stick figures is the same as in Fig. 8 above.
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hollywood – P@100: 100% boris johnson – P@100: 100% vision – P@100: 93%

Fig. 12 The top two retrieval results for three queries on our BBC News dataset – hollywood, boris johnson, and vision.
The frames and associated videos are retrieved from 5k hours of BBC video. We give the precision at 100 (P@100) for these
queries, equivalent to the first page of results of our web application.

for each query, reporting the mean average precision
(mAP) over all queries. We significantly outperform
Mishra et al . across all datasets – we obtain an mAP
on IC11 of 90.3%, compared to 65.3% from [40]. Our
method scales seamlessly to the larger Sports dataset,
where our system achieves a precision at 20 images
(P@20) of 92.5%, more than doubling that of 43.4%
from [40]. Mishra et al . [40] also report retrieval re-
sults on SVT for released implementations of other text
spotting algorithms. The method from Wang et al . [56]
achieves 21.3% mAP, the method from Neumann et al .
[43] acheives 23.3% mAP and the method proposed by
[40] itself achieves 56.2% mAP, compared to our own
result of 86.3% mAP.

However, as with the text spotting results for SVT,
our retrieval results su↵er from incomplete annotations
on SVT and Sports datasets – Fig. 13 shows how pre-
cision is hurt by this problem. The consequence is that
the true mAP on SVT is higher than the reported mAP
of 86.3%.

Depending on the image resolution, our algorithm
takes approximately 5-20s to compute the end-to-end
results per image on a single CPU core and single GPU.
We analyse the time taken for each stage of our pipeline
on the SVT dataset, which has an average image size of
1260⇥ 860, showing the results in Table 7. Since we re-
duce the number of proposals throughout the pipeline,
we can allow the processing time per proposal to in-
crease while keeping the total processing time for each
stage stable. This a↵ords us the use of more computa-

Stage # proposals Time Time/proposal

(a) Edge Boxes > 107 2.2s < 0.002ms
(b) ACF detector > 107 2.1s < 0.002ms
(c) RF filter 104 1.8s 0.18ms
(d) CNN regression 103 1.2s 1.2ms
(e) CNN recognition 103 2.2s 2.2ms

Table 7 The processing time for each stage of the pipeline
evaluated on the SVT dataset on a single CPU core and single
GPU. As the pipeline progresses from (a)-(e), the number
of proposals is reduced (starting from all possible bounding
boxes), allowing us to increase our computational budget per
proposal while keeping the overall processing time for each
stage comparable.

tionally complex features and classifiers as the pipeline
progresses. Our method can be trivially parallelised,
meaning we can process 1-2 images per second on a
high-performance workstation with 16 physical CPU
cores and 4 commodity GPUs.

The high precision and speed of our pipeline allows
us to process huge datasets for practical search applica-
tions. We demonstrate this on a 5000 hour BBC News
dataset. Building a search engine and front-end web ap-
plication around our image retrieval pipeline allows a
user to instantly search for visual occurrences of text
within the huge video dataset. This works exception-
ally well, with Fig. 12 showing some example retrieval
results from our visual search engine. While we do not
have groundtruth annotations to quantify the retrieval
performance on this dataset, we measure the precision

16 Max Jaderberg et al.

Text Based Image Retrieval

Model IC11 (mAP) SVT (mAP) STR (mAP) Sports (mAP) Sports (P@10) Sports (P@20)

Wang [56]* - 21.3 - - - -
Neumann [43]* - 23.3 - - - -
Mishra [40] 65.3 56.2 42.7 - 44.8 43.4
Proposed 90.3 86.3 66.5 66.1 91.0 92.5

Table 6 Comparison to previous methods for text based image retrieval. We report mean average precision (mAP) for IC11,
SVT, STR, and Sports, and also report top-n retrieval to compute precision at n (P@n) on Sports. Bold results outperform
previous state-of-the-art methods. *Experiments were performed by Mishra et al . in [40], not by the original authors.

1.00/1.00/1.00

1.00/1.00/1.00

1.00/1.00/1.00

1.00/1.00/1.00 1.00/0.88/0.93

1.00/1.00/1.00

Fig. 11 Some example text spotting results from SVT-50 (top row) and IC11 (bottom row). Red dashed shows groundtruth
and green shows correctly localised and recognised results. P/R/F figures are given above each image.

be noted that the SVT dataset is only partially anno-
tated. This means that the precision (and therefore F-
measure) is much lower than the true precision if fully
annotated, since many words that are detected are not
annotated and are therefore recorded as false-positives.
We can however report recall on SVT-50 and SVT of
71% and 59% respectively.

Interestingly, when the overlap threshold is reduced
to 0.3 (last row of Table 5), we see a small improvement
across ICDAR datasets and a large +8% improvement
on SVT-50. This implies that our text recognition CNN
is able to accurately recognise even loosely cropped de-
tections. Ignoring the requirement of correctly recognis-
ing the words, i.e. performing purely word detection, we
get an F-measure of 0.85 and 0.81 for IC03 and IC11.

Some example text spotting results are shown in
Fig. 11. Since our pipeline does not rely on connected
component based algorithms or explicit character recog-

nition, we can detect and recognise disjoint, occluded
and blurry words.

A common failure mode of our system is the missing
of words due to the lack of suitable proposal regions, es-
pecially apparent for slanted or vertical text, something
which is not explicitly modelled in our framework. Also
the detection of sub-words or multiple words together
can cause false-positive results.

8.4 Image Retrieval

We also apply our pipeline to the task of text based im-
age retrieval. Given a text query, the images containing
the query text must be returned.

This task is evaluated using the framework of [40],
with the results shown in Table 6. For each defined
query, we retrieve a ranked list of all the images of
the dataset and compute the average precision (AP)

Text detection and retrieval (Jaderberg et al., 2016)
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VQA: Visual Question Answering

www.visualqa.org
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Abstract—We propose the task of free-form and open-ended Visual Question Answering (VQA). Given an image and a natural

language question about the image, the task is to provide an accurate natural language answer. Mirroring real-world scenarios, such

as helping the visually impaired, both the questions and answers are open-ended. Visual questions selectively target different areas

of an image, including background details and underlying context. As a result, a system that succeeds at VQA typically needs a

more detailed understanding of the image and complex reasoning than a system producing generic image captions. Moreover, VQA

is amenable to automatic evaluation, since many open-ended answers contain only a few words or a closed set of answers that can

be provided in a multiple-choice format. We provide a dataset containing ⇠0.25M images, ⇠0.76M questions, and ⇠10M answers

(www.visualqa.org), and discuss the information it provides. Numerous baselines for VQA are provided and compared with human

performance.

F

1 INTRODUCTION
We are witnessing a renewed excitement in multi-discipline
Artificial Intelligence (AI) research problems. In particular,
research in image and video captioning that combines Com-
puter Vision (CV), Natural Language Processing (NLP), and
Knowledge Representation & Reasoning (KR) has dramati-
cally increased in the past year [14], [7], [10], [36], [24],
[22], [51]. Part of this excitement stems from a belief that
multi-discipline tasks like image captioning are a step towards
solving AI. However, the current state of the art demonstrates
that a coarse scene-level understanding of an image paired
with word n-gram statistics suffices to generate reasonable
image captions, which suggests image captioning may not be
as “AI-complete” as desired.
What makes for a compelling “AI-complete” task? We believe
that in order to spawn the next generation of AI algorithms, an
ideal task should (i) require multi-modal knowledge beyond a
single sub-domain (such as CV) and (ii) have a well-defined
quantitative evaluation metric to track progress. For some
tasks, such as image captioning, automatic evaluation is still
a difficult and open research problem [49], [11], [20].
In this paper, we introduce the task of free-form and open-
ended Visual Question Answering (VQA). A VQA system
takes as input an image and a free-form, open-ended, natural-
language question about the image and produces a natural-
language answer as the output. This goal-driven task is
applicable to scenarios encountered when visually-impaired
users [2] or intelligence analysts actively elicit visual infor-
mation. Example questions are shown in Fig. 1.
Open-ended questions require a potentially vast set of AI
capabilities to answer – fine-grained recognition (e.g., “What
kind of cheese is on the pizza?”), object detection (e.g., “How
many bikes are there?”), activity recognition (e.g., “Is this man
crying?”), knowledge base reasoning (e.g., “Is this a vegetarian

• ⇤The first two authors contributed equally.
• S. Antol, A. Agrawal, J. Lu, D. Batra, and D. Parikh are with Virginia

Tech.
• M. Mitchell and C. L. Zitnick are with Microsoft Research, Redmond.

Does it appear to be rainy? 
Does this person have 20/20 vision? 

Is this person expecting company? 
What is just under the tree? 

How many slices of pizza are there? 
Is this a vegetarian pizza? 

What color are her eyes? 
What is the mustache made of? 

Fig. 1: Examples of free-form, open-ended questions collected for
images via Amazon Mechanical Turk. Note that commonsense
knowledge is needed along with a visual understanding of the scene
to answer many questions.

pizza?”), and commonsense reasoning (e.g., “Does this person
have 20/20 vision?”, “Is this person expecting company?”).
VQA [17], [34], [48], [2] is also amenable to automatic
quantitative evaluation, making it possible to effectively track
progress on this task. While the answer to many questions is
simply “yes” or “no”, the process for determining a correct
answer is typically far from trivial (e.g. in Fig. 1, “Does this
person have 20/20 vision?”). Moreover, since questions about
images often tend to seek specific information, simple one-
to-three word answers are sufficient for many questions. In
such scenarios, we can easily evaluate a proposed algorithm
by the number of questions it answers correctly. In this
paper, we present both an open-ended answering task and a
multiple-choice task [43], [31]. Unlike the open-answer task
that requires a free-form response, the multiple-choice task
only requires an algorithm to pick from a predefined list of
possible answers.
We present a large dataset that contains 204,721 images from
the MS COCO dataset [30] and a newly created abstract
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