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Recurrent Neural Networks

Multi-layer 
Perceptron

Recurrent Network

• An MLP can only map from input to output vectors, whereas an RNN can, in principle, map 
from the entire history of previous inputs to each output. 
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Recurrent Networks offer a lot of flexibility

Vanilla Neural Networks

Slide credit: Andrej Karpathy
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Recurrent Networks offer a lot of flexibility

Slide credit: Andrej Karpathy

e.g. Image Captioning
image -> sequence of words
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Recurrent Networks offer a lot of flexibility

Slide credit: Andrej Karpathy

e.g. Sentiment Classification
sequence of words -> sentiment
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Recurrent Networks offer a lot of flexibility

Slide credit: Andrej Karpathy

e.g. Machine Translation
seq of words -> seq of words
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Recurrent Networks offer a lot of flexibility

Slide credit: Andrej Karpathy

e.g. Video classification on frame level
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• RNNs are very powerful, because they 
combine two properties:
−Distributed hidden state that allows them to 

store a lot of information about the past 
efficiently.
−Non-linear dynamics that allows them to 

update their hidden state in complicated 
ways.

• With enough neurons and time, RNNs 
can compute anything that can be 
computed by your computer. 

Recurrent neural networks

input

input

input

hidden

hidden

hidden

output

output

output
time à

Slide credit: G. Hinton
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Multiple Object Recognition with Visual 
Attention, Ba et al.

Sequential
Processing
of fixed 
inputs

Sequential
Processing
of fixed 
outputs

DRAW: A Recurrent Neural 
Network For Image 
Generation, Gregor et al.

Slide credit: Andrej Karpathy
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Recurrent Neural Network

x

RNN
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Recurrent Neural Network

x

RNN

y
usually want to 
predict a vector at 
some time steps
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Recurrent Neural Network

x

RNN

y
Consider what happens when we unroll the loop:

A recurrent neural network can be thought of as multiple copies of 
the same network, each passing a message to a successor.
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Recurrent Neural Network

x

RNN

y
We can process a sequence of vectors x by applying 
a recurrence formula at every time step:

new state old state input vector at 
some time step

some function
with parameters W

Important: the same function and the same set of parameters are used at 
every time step.
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(Vanilla) Recurrent Neural Network

x

RNN

y

The state consists of a single “hidden” vector h:
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• The recurrent model is represented as a multi-layer one (with an 
unbounded number of layers) and backpropagation is applied 
on the unrolled model 

15

Backpropagation Through Time (BPTT)
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Backpropagation
Through Time 
(BPTT)

Black is the prediction, errors are bright yellow, derivatives are mustard 
colored.
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• Explain Images with Multimodal Recurrent Neural Networks, Mao et al.
• Deep Visual-Semantic Alignments for Generating Image Descriptions, Karpathy and Fei-Fei
• Show and Tell: A Neural Image Caption Generator, Vinyals et al.
• Long-term Recurrent Convolutional Networks for Visual Recognition and Description, Donahue et al.
• Learning a Recurrent Visual Representation for Image Caption Generation, Chen and Zitnick
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Image Captioning

Convolutional Neural Network

Recurrent	Neural	Network

Slide credit: Andrej Karpathy
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Slide credit: Andrej Karpathy



test image

Slide credit: Andrej Karpathy
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X Slide credit: Andrej Karpathy
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x0
<START

>

<START> Slide credit: Andrej Karpathy
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>
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<START>

test image

before:
h	=	tanh(Wxh*	x	+	Whh *	h)

now:
h	=	tanh(Wxh*	x +	Whh *	h +	Wih *	v)

v

Wih

Slide credit: Andrej Karpathy
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test image

straw

sample!

Slide credit: Andrej Karpathy
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Slide credit: Andrej Karpathy
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Slide credit: Andrej Karpathy
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Slide credit: Andrej Karpathy
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hat
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y2

sample
<END> token
=> finish.

Slide credit: Andrej Karpathy



Slide credit: Andrej Karpathy
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• (Vanilla) RNNs connect previous information 
to present task: 

• - enough for predicting the next word for 
“the clouds are in the sky”

• - may not be enough when more context 
is needed 

• “I grew up in France… I speak 
fluent French.”

30

The problem of long-term dependencies

Adapted from: C. Olah
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• In a traditional recurrent neural network, during the gradient 
backpropagation phase, the gradient signal can end up being multiplied 
a large number of times

• If the gradients are large
−Exploding gradients, learning diverges 
−Solution: Clip the gradients to a certain max 
value.

• If the gradients are small
−Vanishing gradients, learning very slow or stops
−Solution: introducing memory via LSTM, 
GRU, etc. 

31

The problem of vanishing gradients
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All recurrent neural networks have the form of a chain of repeating modules of 
neural network

Adapted from: C. Olah
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• A memory cell using logistic 
and linear units with 
multiplicative interactions:

• Information gets into the cell 
whenever its input gate is 
on.

• The information stays in the 
cell so long as its forget gate 
is on.

• Information can be read from 
the cell by turning on its 
output gate.

33

Long Short Term Memory (LSTM)[Hochreiter & Schmidhuber (1997) ]

Adapted from: G Hinton and C. Olah
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The Core Idea Behind LSTMs : Cell State

Gates are a way to optionally let information 
through. They are composed out of a sigmoid 
neural net layer and a pointwise multiplication 
operation.

An LSTM has three of these gates, to protect and control the cell state.

Adapted from: C. Olah
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LSTM : Forget gate

It looks at ht-1 and xt and outputs a 
number between 0 and 1 for each 
number in the cell state Ct-1. 

A 1 represents completely keep 
this while a 0 represents 
completely get rid of this.

Adapted from: C. Olah
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LSTM : Input gate and Cell State
The next step is to decide what new information we’re going to store in the cell state.

a sigmoid layer called the input gate 
layer decides which values we’ll 
update.

a tanh layer creates a vector of new 
candidate values, that could be added 
to the state. 

Adapted from: C. Olah
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LSTM : Input gate and Cell State
It’s now time to update the old cell state into the new cell state.

We multiply the old state by ft
forgetting the things we decided 
to forget earlier.

Then, we add the new candidate 
values, scaled by how much we 
decided to update each state 
value.

Adapted from: C. Olah
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LSTM : Output
Finally, we need to decide what we’re going to output.

First, we run a sigmoid layer which decides 
what parts of the cell state we’re going to 
output. 

Then, we put the cell state through tanh
(to push the values to be between -1 
and 1) and multiply it by the output of 
the sigmoid gate, so that we only output 
the parts we decided to.

Adapted from: C. Olah
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• Introduced by Cho et al. (2014) It combines the forget and input gates into a 
single “update gate.” It also merges the cell state and hidden state, and 
more. 
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LSTM variants : Gated Recurrent Unit (GRU)

Adapted from: C. Olah
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• BRNNs process the data in both directions with two separate hidden layers:
- Forward hidden sequence: iterates from t=T:1 
- Backward hidden sequence: iterates from t=1:T 
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Bi-directional Recurrent Neural Networks (BRNN)

Adapted from: A. Graves
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Applications : 
Multi-label image 
classification

Wang et al CVPR 2016
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Applications : 
Segmentation

Zheng et al ICCV 2015
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Applications: Visual Sequence Tasks

Jeff	Donahue	et	al.	CVPR’15
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Applications : 
Videos to 
Natural Text

Venugopalan et al. ICCV 2015


