
Recurrent Neural
Networks

PARRSLAB

2

Recurrent Neural Networks

Multi-layer
Perceptron

Recurrent Network

• An MLP can only map from input to output vectors, whereas an RNN can, in principle, map
from the entire history of previous inputs to each output.

PARRSLAB

3

Recurrent Networks offer a lot of flexibility

Vanilla Neural Networks

Slide credit: Andrej Karpathy

PARRSLAB

4

Recurrent Networks offer a lot of flexibility

Slide credit: Andrej Karpathy

e.g. Image Captioning
image -> sequence of words

PARRSLAB

5

Recurrent Networks offer a lot of flexibility

Slide credit: Andrej Karpathy

e.g. Sentiment Classification
sequence of words -> sentiment

PARRSLAB

6

Recurrent Networks offer a lot of flexibility

Slide credit: Andrej Karpathy

e.g. Machine Translation
seq of words -> seq of words

PARRSLAB

7

Recurrent Networks offer a lot of flexibility

Slide credit: Andrej Karpathy

e.g. Video classification on frame level

PARRSLAB

• RNNs are very powerful, because they
combine two properties:
−Distributed hidden state that allows them to

store a lot of information about the past
efficiently.
−Non-linear dynamics that allows them to

update their hidden state in complicated
ways.

• With enough neurons and time, RNNs
can compute anything that can be
computed by your computer.

Recurrent neural networks

input

input

input

hidden

hidden

hidden

output

output

output
time à

Slide credit: G. Hinton

PARRSLAB

9

Multiple Object Recognition with Visual
Attention, Ba et al.

Sequential
Processing
of fixed
inputs

Sequential
Processing
of fixed
outputs

DRAW: A Recurrent Neural
Network For Image
Generation, Gregor et al.

Slide credit: Andrej Karpathy

PARRSLAB

10

Recurrent Neural Network

x

RNN

PARRSLAB

11

Recurrent Neural Network

x

RNN

y
usually want to
predict a vector at
some time steps

PARRSLAB

12

Recurrent Neural Network

x

RNN

y
Consider what happens when we unroll the loop:

A recurrent neural network can be thought of as multiple copies of
the same network, each passing a message to a successor.

x
0

RNN

y

x
1

RNN

y

x
2

RNN

y

xt

RNN

y

....

PARRSLAB

13

Recurrent Neural Network

x

RNN

y
We can process a sequence of vectors x by applying
a recurrence formula at every time step:

new state old state input vector at
some time step

some function
with parameters W

Important: the same function and the same set of parameters are used at
every time step.

PARRSLAB

14

(Vanilla) Recurrent Neural Network

x

RNN

y

The state consists of a single “hidden” vector h:

PARRSLAB

• The recurrent model is represented as a multi-layer one (with an
unbounded number of layers) and backpropagation is applied
on the unrolled model

15

Backpropagation Through Time (BPTT)

PARRSLAB

16

Backpropagation
Through Time
(BPTT)

Black is the prediction, errors are bright yellow, derivatives are mustard
colored.

PARRSLAB

• Explain Images with Multimodal Recurrent Neural Networks, Mao et al.
• Deep Visual-Semantic Alignments for Generating Image Descriptions, Karpathy and Fei-Fei
• Show and Tell: A Neural Image Caption Generator, Vinyals et al.
• Long-term Recurrent Convolutional Networks for Visual Recognition and Description, Donahue et al.
• Learning a Recurrent Visual Representation for Image Caption Generation, Chen and Zitnick

17

Image Captioning

Convolutional Neural Network

Recurrent	Neural	Network

Slide credit: Andrej Karpathy

test image

Slide credit: Andrej Karpathy

test image

Slide credit: Andrej Karpathy

test image

X Slide credit: Andrej Karpathy

test image

x0
<START

>

<START> Slide credit: Andrej Karpathy

h0

x0
<START

>

y0

<START>

test image

before:
h	=	tanh(Wxh*	x	+	Whh *	h)

now:
h	=	tanh(Wxh*	x +	Whh *	h +	Wih *	v)

v

Wih

Slide credit: Andrej Karpathy

h0

x0
<START

>

y0

<START>

test image

straw

sample!

Slide credit: Andrej Karpathy

h0

x0
<START

>

y0

<START>

test image

straw

h1

y1

Slide credit: Andrej Karpathy

h0

x0
<START

>

y0

<START>

test image

straw

h1

y1

hat

sample!

Slide credit: Andrej Karpathy

h0

x0
<START

>

y0

<START>

test image

straw

h1

y1

hat

h2

y2

Slide credit: Andrej Karpathy

h0

x0
<START

>

y0

<START>

test image

straw

h1

y1

hat

h2

y2

sample
<END> token
=> finish.

Slide credit: Andrej Karpathy

Slide credit: Andrej Karpathy

PARRSLAB

• (Vanilla) RNNs connect previous information
to present task:

• - enough for predicting the next word for
“the clouds are in the sky”

• - may not be enough when more context
is needed

• “I grew up in France… I speak
fluent French.”

30

The problem of long-term dependencies

Adapted from: C. Olah

PARRSLAB

• In a traditional recurrent neural network, during the gradient
backpropagation phase, the gradient signal can end up being multiplied
a large number of times

• If the gradients are large
−Exploding gradients, learning diverges
−Solution: Clip the gradients to a certain max
value.

• If the gradients are small
−Vanishing gradients, learning very slow or stops
−Solution: introducing memory via LSTM,
GRU, etc.

31

The problem of vanishing gradients

PARRSLAB

32

All recurrent neural networks have the form of a chain of repeating modules of
neural network

Adapted from: C. Olah

PARRSLAB

• A memory cell using logistic
and linear units with
multiplicative interactions:

• Information gets into the cell
whenever its input gate is
on.

• The information stays in the
cell so long as its forget gate
is on.

• Information can be read from
the cell by turning on its
output gate.

33

Long Short Term Memory (LSTM)[Hochreiter & Schmidhuber (1997)]

Adapted from: G Hinton and C. Olah

PARRSLAB

34

The Core Idea Behind LSTMs : Cell State

Gates are a way to optionally let information
through. They are composed out of a sigmoid
neural net layer and a pointwise multiplication
operation.

An LSTM has three of these gates, to protect and control the cell state.

Adapted from: C. Olah

PARRSLAB

35

LSTM : Forget gate

It looks at ht-1 and xt and outputs a
number between 0 and 1 for each
number in the cell state Ct-1.

A 1 represents completely keep
this while a 0 represents
completely get rid of this.

Adapted from: C. Olah

PARRSLAB

36

LSTM : Input gate and Cell State
The next step is to decide what new information we’re going to store in the cell state.

a sigmoid layer called the input gate
layer decides which values we’ll
update.

a tanh layer creates a vector of new
candidate values, that could be added
to the state.

Adapted from: C. Olah

PARRSLAB

37

LSTM : Input gate and Cell State
It’s now time to update the old cell state into the new cell state.

We multiply the old state by ft
forgetting the things we decided
to forget earlier.

Then, we add the new candidate
values, scaled by how much we
decided to update each state
value.

Adapted from: C. Olah

PARRSLAB

38

LSTM : Output
Finally, we need to decide what we’re going to output.

First, we run a sigmoid layer which decides
what parts of the cell state we’re going to
output.

Then, we put the cell state through tanh
(to push the values to be between -1
and 1) and multiply it by the output of
the sigmoid gate, so that we only output
the parts we decided to.

Adapted from: C. Olah

PARRSLAB

• Introduced by Cho et al. (2014) It combines the forget and input gates into a
single “update gate.” It also merges the cell state and hidden state, and
more.

39

LSTM variants : Gated Recurrent Unit (GRU)

Adapted from: C. Olah

PARRSLAB

• BRNNs process the data in both directions with two separate hidden layers:
- Forward hidden sequence: iterates from t=T:1
- Backward hidden sequence: iterates from t=1:T

40

Bi-directional Recurrent Neural Networks (BRNN)

Adapted from: A. Graves

PARRSLAB

41

Applications :
Multi-label image
classification

Wang et al CVPR 2016

PARRSLAB

42

Applications :
Segmentation

Zheng et al ICCV 2015

PARRSLAB

43

Applications: Visual Sequence Tasks

Jeff	Donahue	et	al.	CVPR’15

PARRSLAB

44

Applications :
Videos to
Natural Text

Venugopalan et al. ICCV 2015

