
Erkut Erdem�Aykut Erdem�Levent Karacan
Computer Vision Lab, Hacettepe University

Adversarial Training
Attacks on Deep Networks and

Generative Adversarial Networks

images from Geri’s Game (Pixar, 1997)

Outline

• Part 1: Attacks on Deep Networks

• Part 2: Generative Adversarial Networks (GANs)

• Part 3: Image Editing with GANs

2

10 Minutes Break

Erkut Erdem
Computer Vision Lab, Hacettepe University

Part 1 – Attacks on
Deep Networks

John Carpenter’s The Thing (1982)

Deep Convolutional Networks
in 10 mins

4

[Rosenblatt 57]

Perceptron

 The goal is estimating the posterior probability of the binary label y of a vector x: 
 
 
 
 
 
 
 
 

8

Σ
⁞

b
w1

wD

w2

1

x1

x2

xD

S P(y = 1 | x, w, b)

linear 
weighting

accumulation non-linear 
activation

1st Era (1940’s-1960’s): Invention
• Connectionism (Hebb 1940’s): complex behaviors arise from interconnected

networks of simple units

• Artificial neurons (Hebb, McCulloch and Pitts 1940’s-1950’s)

• Perceptron (Rosenblatt 1950’s): Single layer with learning rule

Slide adapted from Rob Fergus 5

2nd Era (1980’s-1990’s): Multi-layered Networks
• Back-propagation (Rumelhart, Hinton and Williams 1986 +others):

effective way to train multi-layered networks

• Convolutional networks (LeCun et al. 1989): architecture adapted for images
(inspired by Hubel and Wiesel’s simple/complex cells)

6

INPUT
32x32

Convolutions SubsamplingConvolutions

C1: feature maps
6@28x28

Subsampling

S2: f. maps
6@14x14

S4: f. maps 16@5x5
C5: layer
120

C3: f. maps 16@10x10

F6: layer
 84

Full connection
Full connection

Gaussian connections

OUTPUT
 10

Slide adapted from Rob Fergus

The Deep Learning Era (2011-present)
• Big gains in performance on perceptual tasks:

• Vision
• Speech understanding
• Natural language processing

• Three ingredients:
1. Deep neural network models (supervised training)
2. Big labeled datasets
3. Fast GPU computation

7Slide credit: Rob Fergus

Powerful Hardware
• Deep neural nets highly amenable to implementation on Graphics

Processing Units (GPUs)
• Matrix multiplication
• 2D convolution

• Latest generation nVidia GPUs (Pascal)
deliver 10 Tflops

• Faster than fastest computer
in the world in 2000

• 10 million times faster than
1980’s Sun workstation

8Slide adapted from Rob Fergus

Modern convolutional nets

 Excellent performance in most image
understanding tasks

 Learn a sequence of general-purpose
representations  

 Millions of parameters learned from
data

 The “meaning” of the representation is
unclear

3

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.

5

[AlexNet by Krizhevsky et al. 2012]

AlexNet: The Model That Changed The History
• Krizhevsky, Sutskever and Hinton (2012)

− 8 layer Convolutional network model [LeCun et al. 1989]
− 7 hidden layers, 650,000 neurons, ~60,000,000 parameters
− Trained on 1.2 million ImageNet images (with labels)
−GPU implementation (50x speedup over CPU)
− Training time: 1 week on pair of GPUs

9

“Cat”

Joshua Drewe

Supervised Learning: Image Classification

10

“Cat”

Supervised Learning: Image Classification

Model
[parameters θ]

Joshua Drewe

Training: Adjust
model parameters θ
so predicted
labels match true
labels across
training set

11

Modern Convolutional Nets

Excellent performance in most image
understanding tasks
Learn a sequence of general-purpose
representations

Millions of parameters learned from data
The “meaning” of the representation is
unclear

Modern convolutional nets

 Excellent performance in most image
understanding tasks

 Learn a sequence of general-purpose
representations  

 Millions of parameters learned from
data

 The “meaning” of the representation is
unclear

3

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.

5

[AlexNet by Krizhevsky et al. 2012]
[AlexNet by Krizhevsky et al. 2012]

12Slide credit: Andrea Vedaldi

Convolutions with Filters
• Each filter acts on multiple input channels

Each filter acts on multiple input channels

Convolution with 3D filters 7

Σ

x y

FLocal 
Filters look locally  
 
 
Translation invariant  
Filters act the same  
everywhere

− Convolution is local
Filters look locally
Parameter sharing

− Translation invariant
Filters act the same everywhere

As a neural network

Linear convolution 13

Σ
⁞

b
f1

fD

f2

1
x1

x2

xD

S

ΣFq

ΣFq

lattice  
structure

multiple  
feature channels

Σ

local and translation  
invariant action

x y

Fq

As a neural network

Linear convolution 13

Σ
⁞

b
f1

fD

f2

1
x1

x2

xD

S

ΣFq

ΣFq

lattice  
structure

multiple  
feature channels

Σ

local and translation  
invariant action

x y

Fq

As a neural network

Linear convolution 13

Σ
⁞

b
f1

fD

f2

1
x1

x2

xD

S

ΣFq

ΣFq

lattice  
structure

multiple  
feature channels

Σ

local and translation  
invariant action

x y

Fq

13Slide credit: Andrea Vedaldi

Convolution
• Convolution = Spatial filtering

• Different filters (weights) reveal a different characteristics of the input.

2-D Convolution

What does this convolution kernel do?

⇤
0 1 0
1 4 1

0 1 0

Roger Grosse and Nitish Srivastava CSC321 Lecture 11 Convolutional networks February 15, 2015 17 / 29

Discrete filtering in 2D
•  Same equation, one more index

–  now the filter is a rectangle you slide around over a grid of numbers

•  Usefulness of associativity
–  often apply several filters one after another: (((a * b1) * b2) * b3)
–  this is equivalent to applying one filter: a * (b1 * b2 * b3)

Slide credit: S. Marschner

1/8

Or convolution transpose

Deconvolution layer 44

Convolution

✱

F

As matrix multiplication

Banded matrix equivalent to F

Transposed

Transposed matrix

Convolution transpose

✱T

F

14

Convolution
• Convolution = Spatial filtering

• Different filters (weights) reveal a different characteristics of the input.

2-D Convolution

What does this convolution kernel do?

⇤
0 -1 0
-1 4 -1

0 -1 0

Roger Grosse and Nitish Srivastava CSC321 Lecture 11 Convolutional networks February 15, 2015 19 / 29

Or convolution transpose

Deconvolution layer 44

Convolution

✱

F

As matrix multiplication

Banded matrix equivalent to F

Transposed

Transposed matrix

Convolution transpose

✱T

F

Discrete filtering in 2D
•  Same equation, one more index

–  now the filter is a rectangle you slide around over a grid of numbers

•  Usefulness of associativity
–  often apply several filters one after another: (((a * b1) * b2) * b3)
–  this is equivalent to applying one filter: a * (b1 * b2 * b3)

Slide credit: S. Marschner

15

Convolution
• Convolution = Spatial filtering

• Different filters (weights) reveal a different characteristics of the input.

2-D Convolution

What does this convolution kernel do?

⇤
1 0 -1
2 0 -2

1 0 -1

Roger Grosse and Nitish Srivastava CSC321 Lecture 11 Convolutional networks February 15, 2015 20 / 29

Or convolution transpose

Deconvolution layer 44

Convolution

✱

F

As matrix multiplication

Banded matrix equivalent to F

Transposed

Transposed matrix

Convolution transpose

✱T

F

Discrete filtering in 2D
•  Same equation, one more index

–  now the filter is a rectangle you slide around over a grid of numbers

•  Usefulness of associativity
–  often apply several filters one after another: (((a * b1) * b2) * b3)
–  this is equivalent to applying one filter: a * (b1 * b2 * b3)

Slide credit: S. Marschner

16

Convolutional Layer
• Multiple filters produce multiple output channels
• For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

32

32

3

Convolutional Layer

activation maps

6

28

28

We stack these up to get an output of size 28x28x6.
Slide credit: Alex Karpathy 17

Pooling Layer
• makes the representations smaller

and more manageable
• operates over each activation map

independently:
• Max pooling, average pooling, etc.

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

max pool with 2x2
filters and stride 2 6 8

3 4

18Slide adapted from Alex Karpathy

• contains neurons that connect to the entire input volume, as in ordinary
Neural Networks

19

Fully Connected Layer

Slide credit: Alex Karpathy 20

Feature Learning
• Hierarchical layer structure allows to learn hierarchical filters (features).

Slide credit: Yann LeCun 20

Visualizing The Representation
t-SNE visualization
(van der Maaten & Hinton)

• Embed high-dimensional points so
that locally, pairwise distances are
conserved

• i.e. similar things end up in similar
places. dissimilar things end up
wherever

• Right: Example embedding of
MNIST digits (0-9) in 2D

Slide credit: Alex Karpathy 21

Three Years of ProgressRevolution	of	Depth
11x11	conv,	96,	/4,	pool/2

5x5	conv,	256,	pool/2

3x3	conv,	384

3x3	conv,	384

3x3	conv,	256,	pool/2

fc,	4096

fc,	4096

fc,	1000

AlexNet,	8	layers
(ILSVRC	2012)

3x3	conv,	64

3x3	conv,	64,	pool/2

3x3	conv,	128

3x3	conv,	128,	pool/2

3x3	conv,	256

3x3	conv,	256

3x3	conv,	256

3x3	conv,	256,	pool/2

3x3	conv,	512

3x3	conv,	512

3x3	conv,	512

3x3	conv,	512,	pool/2

3x3	conv,	512

3x3	conv,	512

3x3	conv,	512

3x3	conv,	512,	pool/2

fc,	4096

fc,	4096

fc,	1000

VGG,	19	layers
(ILSVRC	2014)

input

Conv
7x7+ 2(S)

MaxPool
3x3+ 2(S)

LocalRespNorm

Conv
1x1+ 1(V)

Conv
3x3+ 1(S)

LocalRespNorm

MaxPool
3x3+ 2(S)

Conv Conv Conv Conv
1x1+ 1(S) 3x3+ 1(S) 5x5+ 1(S) 1x1+ 1(S)

Conv Conv MaxPool
1x1+ 1(S) 1x1+ 1(S) 3x3+ 1(S)

Dept hConcat

Conv Conv Conv Conv
1x1+ 1(S) 3x3+ 1(S) 5x5+ 1(S) 1x1+ 1(S)

Conv Conv MaxPool
1x1+ 1(S) 1x1+ 1(S) 3x3+ 1(S)

Dept hConcat

MaxPool
3x3+ 2(S)

Conv Conv Conv Conv
1x1+ 1(S) 3x3+ 1(S) 5x5+ 1(S) 1x1+ 1(S)

Conv Conv MaxPool
1x1+ 1(S) 1x1+ 1(S) 3x3+ 1(S)

Dept hConcat

Conv Conv Conv Conv
1x1+ 1(S) 3x3+ 1(S) 5x5+ 1(S) 1x1+ 1(S)

Conv Conv MaxPool
1x1+ 1(S) 1x1+ 1(S) 3x3+ 1(S)

AveragePool
5x5+ 3(V)

Dept hConcat

Conv Conv Conv Conv
1x1+ 1(S) 3x3+ 1(S) 5x5+ 1(S) 1x1+ 1(S)

Conv Conv MaxPool
1x1+ 1(S) 1x1+ 1(S) 3x3+ 1(S)

Dept hConcat

Conv Conv Conv Conv
1x1+ 1(S) 3x3+ 1(S) 5x5+ 1(S) 1x1+ 1(S)

Conv Conv MaxPool
1x1+ 1(S) 1x1+ 1(S) 3x3+ 1(S)

Dept hConcat

Conv Conv Conv Conv
1x1+ 1(S) 3x3+ 1(S) 5x5+ 1(S) 1x1+ 1(S)

Conv Conv MaxPool
1x1+ 1(S) 1x1+ 1(S) 3x3+ 1(S)

AveragePool
5x5+ 3(V)

Dept hConcat

MaxPool
3x3+ 2(S)

Conv Conv Conv Conv
1x1+ 1(S) 3x3+ 1(S) 5x5+ 1(S) 1x1+ 1(S)

Conv Conv MaxPool
1x1+ 1(S) 1x1+ 1(S) 3x3+ 1(S)

Dept hConcat

Conv Conv Conv Conv
1x1+ 1(S) 3x3+ 1(S) 5x5+ 1(S) 1x1+ 1(S)

Conv Conv MaxPool
1x1+ 1(S) 1x1+ 1(S) 3x3+ 1(S)

Dept hConcat

AveragePool
7x7+ 1(V)

FC

Conv
1x1+ 1(S)

FC

FC

Soft maxAct ivat ion

soft max0

Conv
1x1+ 1(S)

FC

FC

Soft maxAct ivat ion

soft max1

Soft maxAct ivat ion

soft max2

GoogleNet,	22	layers
(ILSVRC	2014)

Kaiming	He,	Xiangyu	Zhang,	Shaoqing	Ren,	&	Jian	Sun.	“Deep	Residual	Learning	for	Image	Recognition”.	CVPR	2016.

• Very	deep
• Simply	deep

• Branching
• Bottleneck
• Skip	connection

Revolution	of	Depth
11x11	conv,	96,	/4,	pool/2

5x5	conv,	256,	pool/2

3x3	conv,	384

3x3	conv,	384

3x3	conv,	256,	pool/2

fc,	4096

fc,	4096

fc,	1000

AlexNet,	8	layers

(ILSVRC	2012)

Kaiming	He,	Xiangyu	Zhang,	Shaoqing	Ren,	&	Jian	Sun.	“Deep	Residual	Learning	for	Image	Recognition”.	CVPR	2016.

• ReLU
• End-to-end	(no	pre-training)
• Data	augmentation

AlexNet, 8 layers
(ILSVRC 2012)

VGG, 19 layers

(ILSVRC 2014)

• Very deep
• Simply deep

Revolution	of	Depth
11x11	conv,	96,	/4,	pool/2

5x5	conv,	256,	pool/2

3x3	conv,	384

3x3	conv,	384

3x3	conv,	256,	pool/2

fc,	4096

fc,	4096

fc,	1000

AlexNet,	8	layers
(ILSVRC	2012)

3x3	conv,	64

3x3	conv,	64,	pool/2

3x3	conv,	128

3x3	conv,	128,	pool/2

3x3	conv,	256

3x3	conv,	256

3x3	conv,	256

3x3	conv,	256,	pool/2

3x3	conv,	512

3x3	conv,	512

3x3	conv,	512

3x3	conv,	512,	pool/2

3x3	conv,	512

3x3	conv,	512

3x3	conv,	512

3x3	conv,	512,	pool/2

fc,	4096

fc,	4096

fc,	1000

VGG,	19	layers
(ILSVRC	2014)

input

Conv
7x7+ 2(S)

MaxPool
3x3+ 2(S)

LocalRespNorm

Conv
1x1+ 1(V)

Conv
3x3+ 1(S)

LocalRespNorm

MaxPool
3x3+ 2(S)

Conv Conv Conv Conv
1x1+ 1(S) 3x3+ 1(S) 5x5+ 1(S) 1x1+ 1(S)

Conv Conv MaxPool
1x1+ 1(S) 1x1+ 1(S) 3x3+ 1(S)

Dept hConcat

Conv Conv Conv Conv
1x1+ 1(S) 3x3+ 1(S) 5x5+ 1(S) 1x1+ 1(S)

Conv Conv MaxPool
1x1+ 1(S) 1x1+ 1(S) 3x3+ 1(S)

Dept hConcat

MaxPool
3x3+ 2(S)

Conv Conv Conv Conv
1x1+ 1(S) 3x3+ 1(S) 5x5+ 1(S) 1x1+ 1(S)

Conv Conv MaxPool
1x1+ 1(S) 1x1+ 1(S) 3x3+ 1(S)

Dept hConcat

Conv Conv Conv Conv
1x1+ 1(S) 3x3+ 1(S) 5x5+ 1(S) 1x1+ 1(S)

Conv Conv MaxPool
1x1+ 1(S) 1x1+ 1(S) 3x3+ 1(S)

AveragePool
5x5+ 3(V)

Dept hConcat

Conv Conv Conv Conv
1x1+ 1(S) 3x3+ 1(S) 5x5+ 1(S) 1x1+ 1(S)

Conv Conv MaxPool
1x1+ 1(S) 1x1+ 1(S) 3x3+ 1(S)

Dept hConcat

Conv Conv Conv Conv
1x1+ 1(S) 3x3+ 1(S) 5x5+ 1(S) 1x1+ 1(S)

Conv Conv MaxPool
1x1+ 1(S) 1x1+ 1(S) 3x3+ 1(S)

Dept hConcat

Conv Conv Conv Conv
1x1+ 1(S) 3x3+ 1(S) 5x5+ 1(S) 1x1+ 1(S)

Conv Conv MaxPool
1x1+ 1(S) 1x1+ 1(S) 3x3+ 1(S)

AveragePool
5x5+ 3(V)

Dept hConcat

MaxPool
3x3+ 2(S)

Conv Conv Conv Conv
1x1+ 1(S) 3x3+ 1(S) 5x5+ 1(S) 1x1+ 1(S)

Conv Conv MaxPool
1x1+ 1(S) 1x1+ 1(S) 3x3+ 1(S)

Dept hConcat

Conv Conv Conv Conv
1x1+ 1(S) 3x3+ 1(S) 5x5+ 1(S) 1x1+ 1(S)

Conv Conv MaxPool
1x1+ 1(S) 1x1+ 1(S) 3x3+ 1(S)

Dept hConcat

AveragePool
7x7+ 1(V)

FC

Conv
1x1+ 1(S)

FC

FC

Soft maxAct ivat ion

soft max0

Conv
1x1+ 1(S)

FC

FC

Soft maxAct ivat ion

soft max1

Soft maxAct ivat ion

soft max2

GoogleNet,	22	layers
(ILSVRC	2014)

Kaiming	He,	Xiangyu	Zhang,	Shaoqing	Ren,	&	Jian	Sun.	“Deep	Residual	Learning	for	Image	Recognition”.	CVPR	2016.

• Very	deep
• Simply	deep

• Branching
• Bottleneck
• Skip	connection

GoogLeNet,
22 layers

(ILSVRC 2014)

• Branching
• Bottleneck
• Skip connection

Lex Fridman:

fridman@mit.edu

January

2017

Course 6.S191:

Intro to Deep Learning

• AlexNet (2012): First CNN (15.4%)
• 8 layers

• 61 million parameters

• ZFNet (2013): 15.4% to 11.2%
• 8 layers

• More filters. Denser stride.

• VGGNet (2014): 11.2% to 7.3%
• Beautifully uniform:

3x3 conv, stride 1, pad 1, 2x2 max pool

• 16 layers

• 138 million parameters

• GoogLeNet (2014): 11.2% to 6.7%
• Inception modules

• 22 layers

• 5 million parameters

(throw away fully connected layers)

• ResNet (2015): 6.7% to 3.57%
• More layers = better performance

• 152 layers

• CUImage (2016): 3.57% to 2.99%
• Ensemble of 6 models

References: [129]

Szegedy et al. "Going deeper with convolutions." Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition. 2015.

22

Training Deep Neural Networks
• The network is trained by stochastic gradient descent.
• Backpropagation is used similarly as in a fully connected network.
• Pass gradients through element-wise activation function.
• We also need to pass gradients through the convolution operation and the

pooling operation.

23

Object Detection NetworksObject	Detection

backbone	
structure

ImageNet
data

classification	
network

pre-train features

detection
network

detection
data

fine-tune

• AlexNet
• VGG-16
• GoogleNet
• ResNet-101
• …

• R-CNN
• Fast	R-CNN
• Faster	R-CNN
• MultiBox
• SSD
• …

“plug-in”	
features detectors

independently	
developed

“plug-in”
feature detectors
“plug-in”
feature

developed
independently

Slide credit: Kaiming He 24

ResNet’s object	detection	result	on	COCO
*the	original	image	is	from	the	COCO	dataset

Kaiming	He,	Xiangyu	Zhang,	Shaoqing	Ren,	&	Jian	Sun.	“Deep	Residual	Learning	for	Image	Recognition”.	arXiv	2015.
Shaoqing	Ren,	Kaiming	He,	Ross	Girshick,	&	Jian	Sun.	“Faster	R-CNN:	Towards	Real-Time	Object	Detection	with	Region	Proposal	Networks”.	NIPS	2015.

ResNet’s Object Detection Results on COCO

Kaiming He, Xiangyu Zhang,
Shaoqing Ren, & Jian Sun. Deep
Residual Learning for Image
Recognition. CVPR 2016.

Shaoqing Ren, Kaiming He, Ross
Girshick, & Jian Sun. Faster R-
CNN: Towards Real-Time Object
Detection with Region Proposal
Networks. NIPS 2015.

Slide credit: Kaiming He 26

Kaiming	He,	Xiangyu	Zhang,	Shaoqing	Ren,	&	Jian	Sun.	“Deep	Residual	Learning	for	Image	Recognition”.	arXiv	2015.
Shaoqing	Ren,	Kaiming	He,	Ross	Girshick,	&	Jian	Sun.	“Faster	R-CNN:	Towards	Real-Time	Object	Detection	with	Region	Proposal	Networks”.	NIPS	2015.

*the	original	image	is	from	the	COCO	dataset

ResNet’s Object Detection Results on COCO

Kaiming He, Xiangyu Zhang,
Shaoqing Ren, & Jian Sun. Deep
Residual Learning for Image
Recognition. CVPR 2016.

Shaoqing Ren, Kaiming He, Ross
Girshick, & Jian Sun. Faster R-
CNN: Towards Real-Time Object
Detection with Region Proposal
Networks. NIPS 2015.

Slide credit: Kaiming He 27

Story isn't over yet!

27

Story isn't over yet!

… we have reached
the point where ML works,
but let’s see how it can be

easily fooled.
28

Adversarial
Examples

29

“Cat”

Machine Learning System

Sample x f(x)=ytrue

Machine
Learning
System
f

Joshua Drewe
30

“Dog”

Adversarial Examples

Adversarial example a
(indistinguishable from x)

f(a)≠ytrue

Machine
Learning
System
f

Joshua Drewe
31

Adversarial Examples in The Human Brain

(Pinna and Gregory, 2002)

These are
concentric
circles,
not intertwined
spirals.

Slide adapted from Ian Goodfellow 32

Adversarial Examples
• Adversarial examples pose potential security threats for practical machine

learning systems.
• e.g., hypothetical attacks on autonomous vehicles

Slide adapted from Ian Goodfellow 33

Adversarial Examples
• Two types of adversaries (Papernot and Goodfellow 2016):
1. Poisoning training sets

• interfere with the integrity of the training process
• make modifications to existing training data, or insert additional data in the existing

training set
• increases the prediction error

2. Forcing models to make mistakes instantly with adversarial examples
• perturb the inputs on which the model makes predictions (after training, during the

inference phase)
• generate “visually random” images that make a lot of sense to a machine learning

system, but no sense at all to us

34

Not just for neural nets
• Linear models

• Logistic regression

• Softmax regression

• SVMs

• Decision trees

• Nearest neighbors
Slide credit: Ian Goodfellow 35

Lets fool a binary linear
classifier: (logistic regression)

Slide credit: Alex Karpathy 36

2 -1 3 -2 2 2 1 -4 5 1

-1 -1 1 -1 1 -1 1 1 -1 1

Lets fool a binary linear classifier:
x

w

input example

weights

Slide credit: Alex Karpathy 37

class 1 score = dot product:
= -2 + 1 + 3 + 2 + 2 - 2 + 1 - 4 - 5 + 1 = -3
=> probability of class 1 is 1/(1+e^(-(-3))) = 0.0474
i.e. the classifier is 95% certain that this is class 0 example.

2 -1 3 -2 2 2 1 -4 5 1

-1 -1 1 -1 1 -1 1 1 -1 1

input example

weights

Lets fool a binary linear classifier:
x

w

Slide credit: Alex Karpathy 38

2 -1 3 -2 2 2 1 -4 5 1

-1 -1 1 -1 1 -1 1 1 -1 1

? ? ? ? ? ? ? ? ? ?adversarial
x

class 1 score = dot product:
= -2 + 1 + 3 + 2 + 2 - 2 + 1 - 4 - 5 + 1 = -3
=> probability of class 1 is 1/(1+e^(-(-3))) = 0.0474
i.e. the classifier is 95% certain that this is class 0 example.

Lets fool a binary linear classifier:

input example

weights

x

w

Slide credit: Alex Karpathy 39

2 -1 3 -2 2 2 1 -4 5 1

-1 -1 1 -1 1 -1 1 1 -1 1

1.5 -1.5 3.5 -2.5 2.5 1.5 1.5 -3.5 4.5 1.5

class 1 score before:
-2 + 1 + 3 + 2 + 2 - 2 + 1 - 4 - 5 + 1 = -3
=> probability of class 1 is 1/(1+e^(-(-3))) = 0.0474
-1.5+1.5+3.5+2.5+2.5-1.5+1.5-3.5-4.5+1.5 = 2
=> probability of class 1 is now 1/(1+e^(-(2))) = 0.88
i.e. we improved the class 1 probability from 5% to 88%

Lets fool a binary linear classifier:

adversarial
x

x

w

input example

weights

Slide credit: Alex Karpathy 40

2 -1 3 -2 2 2 1 -4 5 1

-1 -1 1 -1 1 -1 1 1 -1 1

1.5 -1.5 3.5 -2.5 2.5 1.5 1.5 -3.5 4.5 1.5

This was only with 10 input
dimensions. A 224x224
input image has 150,528.

(It’s significantly easier
with more numbers, need
smaller nudge for each)

class 1 score before:
-2 + 1 + 3 + 2 + 2 - 2 + 1 - 4 - 5 + 1 = -3
=> probability of class 1 is 1/(1+e^(-(-3))) = 0.0474
-1.5+1.5+3.5+2.5+2.5-1.5+1.5-3.5-4.5+1.5 = 2
=> probability of class 1 is now 1/(1+e^(-(2))) = 0.88
i.e. we improved the class 1 probability from 5% to 88%

Lets fool a binary linear classifier:

adversarial
x

x

w

input example

weights

Slide credit: Alex Karpathy 41

Blog post: Breaking Linear Classifiers on
ImageNet
Recall CIFAR-10 linear classifiers:

ImageNet classifiers:

http://karpathy.github.io/2015/03/30/breaking-convnets/
Slide credit: Alex Karpathy 42

mix in a tiny bit of
Goldfish classifier weights

+ =

100% Goldfish

Breaking Linear Classifiers on ImageNet

Slide credit: Alex Karpathy 43

Breaking Linear Classifiers on ImageNet

Slide credit: Alex Karpathy 44

Breaking Linear Classifiers on ImageNet

Slide credit: Alex Karpathy 45

Intriguing Properties of Neural Networks
(Szegedy et al., 2013)

correct +distort ostrich correct +distort ostrich

increasing the robustness and convergence speed of the models [9, 13]. These deformations are,
however, statistically inefficient, for a given example: they are highly correlated and are drawn from
the same distribution throughout the entire training of the model. We propose a scheme to make this
process adaptive in a way that exploits the model and its deficiencies in modeling the local space
around the training data.

We make the connection with hard-negative mining explicitly, as it is close in spirit: hard-negative
mining, in computer vision, consists of identifying training set examples (or portions thereof) which
are given low probabilities by the model, but which should be high probability instead, cf. [5]. The
training set distribution is then changed to emphasize such hard negatives and a further round of
model training is performed. As shall be described, the optimization problem proposed in this work
can also be used in a constructive way, similar to the hard-negative mining principle.

4.1 Formal description

We denote by f : Rm �! {1 . . . k} a classifier mapping image pixel value vectors to a discrete
label set. We also assume that f has an associated continuous loss function denoted by loss

f

:

Rm ⇥ {1 . . . k} �! R+. For a given x 2 Rm image and target label l 2 {1 . . . k}, we aim to solve
the following box-constrained optimization problem:

• Minimize krk2 subject to:
1. f(x+ r) = l

2. x+ r 2 [0, 1]

m

The minimizer r might not be unique, but we denote one such x + r for an arbitrarily chosen
minimizer by D(x, l). Informally, x + r is the closest image to x classified as l by f . Obviously,
D(x, f(x)) = f(x), so this task is non-trivial only if f(x) 6= l. In general, the exact computation
of D(x, l) is a hard problem, so we approximate it by using a box-constrained L-BFGS. Concretely,
we find an approximation of D(x, l) by performing line-search to find the minimum c > 0 for which
the minimizer r of the following problem satisfies f(x+ r) = l.

• Minimize c|r|+ loss
f

(x+ r, l) subject to x+ r 2 [0, 1]

m

This penalty function method would yield the exact solution for D(X, l) in the case of convex
losses, however neural networks are non-convex in general, so we end up with an approximation in
this case.

4.2 Experimental results

Our “minimimum distortion” function D has the following intriguing properties which we will sup-
port by informal evidence and quantitative experiments in this section:

1. For all the networks we studied (MNIST, QuocNet [10], AlexNet [9]), for each sam-
ple, we have always managed to generate very close, visually hard to distinguish, ad-
versarial examples that are misclassified by the original network (see figure 5 and
http://goo.gl/huaGPb for examples).

2. Cross model generalization: a relatively large fraction of examples will be misclassified by
networks trained from scratch with different hyper-parameters (number of layers, regular-
ization or initial weights).

3. Cross training-set generalization a relatively large fraction of examples will be misclassi-
fied by networks trained from scratch on a disjoint training set.

The above observations suggest that adversarial examples are somewhat universal and not just the
results of overfitting to a particular model or to the specific selection of the training set. They also
suggest that back-feeding adversarial examples to training might improve generalization of the re-
sulting models. Our preliminary experiments have yielded positive evidence on MNIST to support
this hypothesis as well: We have successfully trained a two layer 100-100-10 non-convolutional neu-
ral network with a test error below 1.2% by keeping a pool of adversarial examples a random subset
of which is continuously replaced by newly generated adversarial examples and which is mixed into

5

f: classifier function
x: input image
r: distortion
l: target label

increasing the robustness and convergence speed of the models [9, 13]. These deformations are,
however, statistically inefficient, for a given example: they are highly correlated and are drawn from
the same distribution throughout the entire training of the model. We propose a scheme to make this
process adaptive in a way that exploits the model and its deficiencies in modeling the local space
around the training data.

We make the connection with hard-negative mining explicitly, as it is close in spirit: hard-negative
mining, in computer vision, consists of identifying training set examples (or portions thereof) which
are given low probabilities by the model, but which should be high probability instead, cf. [5]. The
training set distribution is then changed to emphasize such hard negatives and a further round of
model training is performed. As shall be described, the optimization problem proposed in this work
can also be used in a constructive way, similar to the hard-negative mining principle.

4.1 Formal description

We denote by f : Rm �! {1 . . . k} a classifier mapping image pixel value vectors to a discrete
label set. We also assume that f has an associated continuous loss function denoted by loss

f

:

Rm ⇥ {1 . . . k} �! R+. For a given x 2 Rm image and target label l 2 {1 . . . k}, we aim to solve
the following box-constrained optimization problem:

• Minimize krk2 subject to:
1. f(x+ r) = l

2. x+ r 2 [0, 1]

m

The minimizer r might not be unique, but we denote one such x + r for an arbitrarily chosen
minimizer by D(x, l). Informally, x + r is the closest image to x classified as l by f . Obviously,
D(x, f(x)) = f(x), so this task is non-trivial only if f(x) 6= l. In general, the exact computation
of D(x, l) is a hard problem, so we approximate it by using a box-constrained L-BFGS. Concretely,
we find an approximation of D(x, l) by performing line-search to find the minimum c > 0 for which
the minimizer r of the following problem satisfies f(x+ r) = l.

• Minimize c|r|+ loss
f

(x+ r, l) subject to x+ r 2 [0, 1]

m

This penalty function method would yield the exact solution for D(X, l) in the case of convex
losses, however neural networks are non-convex in general, so we end up with an approximation in
this case.

4.2 Experimental results

Our “minimimum distortion” function D has the following intriguing properties which we will sup-
port by informal evidence and quantitative experiments in this section:

1. For all the networks we studied (MNIST, QuocNet [10], AlexNet [9]), for each sam-
ple, we have always managed to generate very close, visually hard to distinguish, ad-
versarial examples that are misclassified by the original network (see figure 5 and
http://goo.gl/huaGPb for examples).

2. Cross model generalization: a relatively large fraction of examples will be misclassified by
networks trained from scratch with different hyper-parameters (number of layers, regular-
ization or initial weights).

3. Cross training-set generalization a relatively large fraction of examples will be misclassi-
fied by networks trained from scratch on a disjoint training set.

The above observations suggest that adversarial examples are somewhat universal and not just the
results of overfitting to a particular model or to the specific selection of the training set. They also
suggest that back-feeding adversarial examples to training might improve generalization of the re-
sulting models. Our preliminary experiments have yielded positive evidence on MNIST to support
this hypothesis as well: We have successfully trained a two layer 100-100-10 non-convolutional neu-
ral network with a test error below 1.2% by keeping a pool of adversarial examples a random subset
of which is continuously replaced by newly generated adversarial examples and which is mixed into

5

increasing the robustness and convergence speed of the models [9, 13]. These deformations are,
however, statistically inefficient, for a given example: they are highly correlated and are drawn from
the same distribution throughout the entire training of the model. We propose a scheme to make this
process adaptive in a way that exploits the model and its deficiencies in modeling the local space
around the training data.

We make the connection with hard-negative mining explicitly, as it is close in spirit: hard-negative
mining, in computer vision, consists of identifying training set examples (or portions thereof) which
are given low probabilities by the model, but which should be high probability instead, cf. [5]. The
training set distribution is then changed to emphasize such hard negatives and a further round of
model training is performed. As shall be described, the optimization problem proposed in this work
can also be used in a constructive way, similar to the hard-negative mining principle.

4.1 Formal description

We denote by f : Rm �! {1 . . . k} a classifier mapping image pixel value vectors to a discrete
label set. We also assume that f has an associated continuous loss function denoted by loss

f

:

Rm ⇥ {1 . . . k} �! R+. For a given x 2 Rm image and target label l 2 {1 . . . k}, we aim to solve
the following box-constrained optimization problem:

• Minimize krk2 subject to:
1. f(x+ r) = l

2. x+ r 2 [0, 1]

m

The minimizer r might not be unique, but we denote one such x + r for an arbitrarily chosen
minimizer by D(x, l). Informally, x + r is the closest image to x classified as l by f . Obviously,
D(x, f(x)) = f(x), so this task is non-trivial only if f(x) 6= l. In general, the exact computation
of D(x, l) is a hard problem, so we approximate it by using a box-constrained L-BFGS. Concretely,
we find an approximation of D(x, l) by performing line-search to find the minimum c > 0 for which
the minimizer r of the following problem satisfies f(x+ r) = l.

• Minimize c|r|+ loss
f

(x+ r, l) subject to x+ r 2 [0, 1]

m

This penalty function method would yield the exact solution for D(X, l) in the case of convex
losses, however neural networks are non-convex in general, so we end up with an approximation in
this case.

4.2 Experimental results

Our “minimimum distortion” function D has the following intriguing properties which we will sup-
port by informal evidence and quantitative experiments in this section:

1. For all the networks we studied (MNIST, QuocNet [10], AlexNet [9]), for each sam-
ple, we have always managed to generate very close, visually hard to distinguish, ad-
versarial examples that are misclassified by the original network (see figure 5 and
http://goo.gl/huaGPb for examples).

2. Cross model generalization: a relatively large fraction of examples will be misclassified by
networks trained from scratch with different hyper-parameters (number of layers, regular-
ization or initial weights).

3. Cross training-set generalization a relatively large fraction of examples will be misclassi-
fied by networks trained from scratch on a disjoint training set.

The above observations suggest that adversarial examples are somewhat universal and not just the
results of overfitting to a particular model or to the specific selection of the training set. They also
suggest that back-feeding adversarial examples to training might improve generalization of the re-
sulting models. Our preliminary experiments have yielded positive evidence on MNIST to support
this hypothesis as well: We have successfully trained a two layer 100-100-10 non-convolutional neu-
ral network with a test error below 1.2% by keeping a pool of adversarial examples a random subset
of which is continuously replaced by newly generated adversarial examples and which is mixed into

5

46

Explaining and Harnessing Adversarial Examples
(Goodfellow et al., 2014)

Slide credit: Ian Goodfellow 47

Score of label ytrue, given input image X
e.g. cross entropy loss

Explaining and Harnessing Adversarial Examples
(Goodfellow et al., 2014)

Slide credit: Ian Goodfellow 48

The Fast Gradient Sign Method

Explaining and Harnessing Adversarial Examples
(Goodfellow et al., 2014)
• Perturbation is computed to minimize a specific norm in the input domain

while increasing the model’s prediction error

49

Adversarial Examples from Overfitting

Slide credit: Ian Goodfellow 50

Adversarial Examples from Excessive Linearity

Slide credit: Ian Goodfellow 51

Modern deep nets are very piecewise
linear

Rectified linear unit

Carefully tuned sigmoid

Maxout

LSTM

Slide credit: Ian Goodfellow 52

Gradient-based Adversarial Examples
• Fast Gradient Sign (Goodfellow et al., 2014)

• Basic Iterative Method (Kurakin et al., 2017)

• Iterative Least-Likely Class Method (Kurakin et al., 2017)

53

Workshop track - ICLR 2017

log-probability of the true class given the image: J(X, y) = � log p(y|X), this relation-
ship will be used below.

• ClipX,✏ {X 0} - function which performs per-pixel clipping of the image X 0, so the result
will be in L1 ✏-neighbourhood of the source image X . The exact clipping equation is as
follows:

ClipX,✏ {X 0} (x, y, z) = min

n

255,X(x, y, z)+✏,max

�

0,X(x, y, z)�✏,X 0
(x, y, z)

o

where X(x, y, z) is the value of channel z of the image X at coordinates (x, y).

2.1 FAST METHOD

One of the simplest methods to generate adversarial images, described in (Goodfellow et al., 2014),
is motivated by linearizing the cost function and solving for the perturbation that maximizes the cost
subject to an L1 constraint. This may be accomplished in closed form, for the cost of one call to
back-propagation:

Xadv
= X + ✏ sign

�

rXJ(X, ytrue)
�

where ✏ is a hyper-parameter to be chosen.

In this paper we refer to this method as “fast” because it does not require an iterative procedure to
compute adversarial examples, and thus is much faster than other considered methods.

2.2 BASIC ITERATIVE METHOD

We introduce a straightforward way to extend the “fast” method—we apply it multiple times with
small step size, and clip pixel values of intermediate results after each step to ensure that they are in
an ✏-neighbourhood of the original image:

Xadv
0 = X, Xadv

N+1 = ClipX,✏

n

Xadv
N + ↵ sign

�

rXJ(Xadv
N , ytrue)

�

o

In our experiments we used ↵ = 1, i.e. we changed the value of each pixel only by 1 on each step.
We selected the number of iterations to be min(✏+ 4, 1.25✏). This amount of iterations was chosen
heuristically; it is sufficient for the adversarial example to reach the edge of the ✏ max-norm ball but
restricted enough to keep the computational cost of experiments manageable.

Below we refer to this method as “basic iterative” method.

2.3 ITERATIVE LEAST-LIKELY CLASS METHOD

Both methods we have described so far simply try to increase the cost of the correct class, without
specifying which of the incorrect classes the model should select. Such methods are sufficient for
application to datasets such as MNIST and CIFAR-10, where the number of classes is small and all
classes are highly distinct from each other. On ImageNet, with a much larger number of classes and
the varying degrees of significance in the difference between classes, these methods can result in
uninteresting misclassifications, such as mistaking one breed of sled dog for another breed of sled
dog. In order to create more interesting mistakes, we introduce the iterative least-likely class method.
This iterative method tries to make an adversarial image which will be classified as a specific desired
target class. For desired class we chose the least-likely class according to the prediction of the trained
network on image X:

yLL = argmin

y

�

p(y|X)

.

For a well-trained classifier, the least-likely class is usually highly dissimilar from the true class, so
this attack method results in more interesting mistakes, such as mistaking a dog for an airplane.

To make an adversarial image which is classified as yLL we maximize log p(yLL|X) by mak-
ing iterative steps in the direction of sign

�

rX log p(yLL|X)

. This last expression equals
sign

�

�rXJ(X, yLL)
�

for neural networks with cross-entropy loss. Thus we have the following
procedure:

4

Workshop track - ICLR 2017

log-probability of the true class given the image: J(X, y) = � log p(y|X), this relation-
ship will be used below.

• ClipX,✏ {X 0} - function which performs per-pixel clipping of the image X 0, so the result
will be in L1 ✏-neighbourhood of the source image X . The exact clipping equation is as
follows:

ClipX,✏ {X 0} (x, y, z) = min

n

255,X(x, y, z)+✏,max

�

0,X(x, y, z)�✏,X 0
(x, y, z)

o

where X(x, y, z) is the value of channel z of the image X at coordinates (x, y).

2.1 FAST METHOD

One of the simplest methods to generate adversarial images, described in (Goodfellow et al., 2014),
is motivated by linearizing the cost function and solving for the perturbation that maximizes the cost
subject to an L1 constraint. This may be accomplished in closed form, for the cost of one call to
back-propagation:

Xadv
= X + ✏ sign

�

rXJ(X, ytrue)
�

where ✏ is a hyper-parameter to be chosen.

In this paper we refer to this method as “fast” because it does not require an iterative procedure to
compute adversarial examples, and thus is much faster than other considered methods.

2.2 BASIC ITERATIVE METHOD

We introduce a straightforward way to extend the “fast” method—we apply it multiple times with
small step size, and clip pixel values of intermediate results after each step to ensure that they are in
an ✏-neighbourhood of the original image:

Xadv
0 = X, Xadv

N+1 = ClipX,✏

n

Xadv
N + ↵ sign

�

rXJ(Xadv
N , ytrue)

�

o

In our experiments we used ↵ = 1, i.e. we changed the value of each pixel only by 1 on each step.
We selected the number of iterations to be min(✏+ 4, 1.25✏). This amount of iterations was chosen
heuristically; it is sufficient for the adversarial example to reach the edge of the ✏ max-norm ball but
restricted enough to keep the computational cost of experiments manageable.

Below we refer to this method as “basic iterative” method.

2.3 ITERATIVE LEAST-LIKELY CLASS METHOD

Both methods we have described so far simply try to increase the cost of the correct class, without
specifying which of the incorrect classes the model should select. Such methods are sufficient for
application to datasets such as MNIST and CIFAR-10, where the number of classes is small and all
classes are highly distinct from each other. On ImageNet, with a much larger number of classes and
the varying degrees of significance in the difference between classes, these methods can result in
uninteresting misclassifications, such as mistaking one breed of sled dog for another breed of sled
dog. In order to create more interesting mistakes, we introduce the iterative least-likely class method.
This iterative method tries to make an adversarial image which will be classified as a specific desired
target class. For desired class we chose the least-likely class according to the prediction of the trained
network on image X:

yLL = argmin

y

�

p(y|X)

.

For a well-trained classifier, the least-likely class is usually highly dissimilar from the true class, so
this attack method results in more interesting mistakes, such as mistaking a dog for an airplane.

To make an adversarial image which is classified as yLL we maximize log p(yLL|X) by mak-
ing iterative steps in the direction of sign

�

rX log p(yLL|X)

. This last expression equals
sign

�

�rXJ(X, yLL)
�

for neural networks with cross-entropy loss. Thus we have the following
procedure:

4

Workshop track - ICLR 2017

log-probability of the true class given the image: J(X, y) = � log p(y|X), this relation-
ship will be used below.

• ClipX,✏ {X 0} - function which performs per-pixel clipping of the image X 0, so the result
will be in L1 ✏-neighbourhood of the source image X . The exact clipping equation is as
follows:

ClipX,✏ {X 0} (x, y, z) = min

n

255,X(x, y, z)+✏,max

�

0,X(x, y, z)�✏,X 0
(x, y, z)

o

where X(x, y, z) is the value of channel z of the image X at coordinates (x, y).

2.1 FAST METHOD

One of the simplest methods to generate adversarial images, described in (Goodfellow et al., 2014),
is motivated by linearizing the cost function and solving for the perturbation that maximizes the cost
subject to an L1 constraint. This may be accomplished in closed form, for the cost of one call to
back-propagation:

Xadv
= X + ✏ sign

�

rXJ(X, ytrue)
�

where ✏ is a hyper-parameter to be chosen.

In this paper we refer to this method as “fast” because it does not require an iterative procedure to
compute adversarial examples, and thus is much faster than other considered methods.

2.2 BASIC ITERATIVE METHOD

We introduce a straightforward way to extend the “fast” method—we apply it multiple times with
small step size, and clip pixel values of intermediate results after each step to ensure that they are in
an ✏-neighbourhood of the original image:

Xadv
0 = X, Xadv

N+1 = ClipX,✏

n

Xadv
N + ↵ sign

�

rXJ(Xadv
N , ytrue)

�

o

In our experiments we used ↵ = 1, i.e. we changed the value of each pixel only by 1 on each step.
We selected the number of iterations to be min(✏+ 4, 1.25✏). This amount of iterations was chosen
heuristically; it is sufficient for the adversarial example to reach the edge of the ✏ max-norm ball but
restricted enough to keep the computational cost of experiments manageable.

Below we refer to this method as “basic iterative” method.

2.3 ITERATIVE LEAST-LIKELY CLASS METHOD

Both methods we have described so far simply try to increase the cost of the correct class, without
specifying which of the incorrect classes the model should select. Such methods are sufficient for
application to datasets such as MNIST and CIFAR-10, where the number of classes is small and all
classes are highly distinct from each other. On ImageNet, with a much larger number of classes and
the varying degrees of significance in the difference between classes, these methods can result in
uninteresting misclassifications, such as mistaking one breed of sled dog for another breed of sled
dog. In order to create more interesting mistakes, we introduce the iterative least-likely class method.
This iterative method tries to make an adversarial image which will be classified as a specific desired
target class. For desired class we chose the least-likely class according to the prediction of the trained
network on image X:

yLL = argmin

y

�

p(y|X)

.

For a well-trained classifier, the least-likely class is usually highly dissimilar from the true class, so
this attack method results in more interesting mistakes, such as mistaking a dog for an airplane.

To make an adversarial image which is classified as yLL we maximize log p(yLL|X) by mak-
ing iterative steps in the direction of sign

�

rX log p(yLL|X)

. This last expression equals
sign

�

�rXJ(X, yLL)
�

for neural networks with cross-entropy loss. Thus we have the following
procedure:

4

Workshop track - ICLR 2017

log-probability of the true class given the image: J(X, y) = � log p(y|X), this relation-
ship will be used below.

• ClipX,✏ {X 0} - function which performs per-pixel clipping of the image X 0, so the result
will be in L1 ✏-neighbourhood of the source image X . The exact clipping equation is as
follows:

ClipX,✏ {X 0} (x, y, z) = min

n

255,X(x, y, z)+✏,max

�

0,X(x, y, z)�✏,X 0
(x, y, z)

o

where X(x, y, z) is the value of channel z of the image X at coordinates (x, y).

2.1 FAST METHOD

One of the simplest methods to generate adversarial images, described in (Goodfellow et al., 2014),
is motivated by linearizing the cost function and solving for the perturbation that maximizes the cost
subject to an L1 constraint. This may be accomplished in closed form, for the cost of one call to
back-propagation:

Xadv
= X + ✏ sign

�

rXJ(X, ytrue)
�

where ✏ is a hyper-parameter to be chosen.

In this paper we refer to this method as “fast” because it does not require an iterative procedure to
compute adversarial examples, and thus is much faster than other considered methods.

2.2 BASIC ITERATIVE METHOD

We introduce a straightforward way to extend the “fast” method—we apply it multiple times with
small step size, and clip pixel values of intermediate results after each step to ensure that they are in
an ✏-neighbourhood of the original image:

Xadv
0 = X, Xadv

N+1 = ClipX,✏

n

Xadv
N + ↵ sign

�

rXJ(Xadv
N , ytrue)

�

o

In our experiments we used ↵ = 1, i.e. we changed the value of each pixel only by 1 on each step.
We selected the number of iterations to be min(✏+ 4, 1.25✏). This amount of iterations was chosen
heuristically; it is sufficient for the adversarial example to reach the edge of the ✏ max-norm ball but
restricted enough to keep the computational cost of experiments manageable.

Below we refer to this method as “basic iterative” method.

2.3 ITERATIVE LEAST-LIKELY CLASS METHOD

Both methods we have described so far simply try to increase the cost of the correct class, without
specifying which of the incorrect classes the model should select. Such methods are sufficient for
application to datasets such as MNIST and CIFAR-10, where the number of classes is small and all
classes are highly distinct from each other. On ImageNet, with a much larger number of classes and
the varying degrees of significance in the difference between classes, these methods can result in
uninteresting misclassifications, such as mistaking one breed of sled dog for another breed of sled
dog. In order to create more interesting mistakes, we introduce the iterative least-likely class method.
This iterative method tries to make an adversarial image which will be classified as a specific desired
target class. For desired class we chose the least-likely class according to the prediction of the trained
network on image X:

yLL = argmin

y

�

p(y|X)

.

For a well-trained classifier, the least-likely class is usually highly dissimilar from the true class, so
this attack method results in more interesting mistakes, such as mistaking a dog for an airplane.

To make an adversarial image which is classified as yLL we maximize log p(yLL|X) by mak-
ing iterative steps in the direction of sign

�

rX log p(yLL|X)

. This last expression equals
sign

�

�rXJ(X, yLL)
�

for neural networks with cross-entropy loss. Thus we have the following
procedure:

4

Workshop track - ICLR 2017

Xadv
0 = X, Xadv

N+1 = ClipX,✏

�

Xadv
N � ↵ sign

�

rXJ(Xadv
N , yLL)

�

For this iterative procedure we used the same ↵ and same number of iterations as for the basic
iterative method.

Below we refer to this method as the “least likely class” method or shortly “l.l. class”.

2.4 COMPARISON OF METHODS OF GENERATING ADVERSARIAL EXAMPLES

Figure 2: Top-1 and top-5 accuracy of Inception v3 under attack by different adversarial methods
and different ✏ compared to “clean images” — unmodified images from the dataset. The accuracy
was computed on all 50, 000 validation images from the ImageNet dataset. In these experiments ✏
varies from 2 to 128.

As mentioned above, it is not guaranteed that an adversarial image will actually be misclassified—
sometimes the attacker wins, and sometimes the machine learning model wins. We did an exper-
imental comparison of adversarial methods to understand the actual classification accuracy on the
generated images as well as the types of perturbations exploited by each of the methods.

The experiments were performed on all 50, 000 validation samples from the ImageNet dataset (Rus-
sakovsky et al., 2014) using a pre-trained Inception v3 classifier (Szegedy et al., 2015). For each
validation image, we generated adversarial examples using different methods and different values
of ✏. For each pair of method and ✏, we computed the classification accuracy on all 50, 000 images.
Also, we computed the accuracy on all clean images, which we used as a baseline.

Top-1 and top-5 classification accuracy on clean and adversarial images for various adversarial
methods are summarized in Figure 2. Examples of generated adversarial images could be found
in Appendix in Figures 5 and 4.

As shown in Figure 2, the fast method decreases top-1 accuracy by a factor of two and top-5 accuracy
by about 40% even with the smallest values of ✏. As we increase ✏, accuracy on adversarial images
generated by the fast method stays on approximately the same level until ✏ = 32 and then slowly
decreases to almost 0 as ✏ grows to 128. This could be explained by the fact that the fast method
adds ✏-scaled noise to each image, thus higher values of ✏ essentially destroys the content of the
image and makes it unrecognisable even by humans, see Figure 5.

On the other hand iterative methods exploit much finer perturbations which do not destroy the image
even with higher ✏ and at the same time confuse the classifier with higher rate. The basic iterative
method is able to produce better adversarial images when ✏ < 48, however as we increase ✏ it is
unable to improve. The “least likely class” method destroys the correct classification of most images
even when ✏ is relatively small.

We limit all further experiments to ✏ 16 because such perturbations are only perceived as a
small noise (if perceived at all), and adversarial methods are able to produce a significant number of
misclassified examples in this ✏-neighbourhood of clean images.

5

Gradient-based Adversarial Examples
Original
sample

54

Workshop track - ICLR 2017

Appendix

Appendix contains following figures:

1. Figure 4 with examples of adversarial images produced by different adversarial methods.
2. Figure 5 with examples of adversarial images for various values of ✏.
3. Figure 6 contain plots of adversarial destruction rates for various image transformations.

Clean image “Fast”; L1 distance to clean image = 32

“Basic iter.”; L1 distance to clean image = 32 “L.l. class”; L1 distance to clean image = 28

Figure 4: Comparison of different adversarial methods with ✏ = 32. Perturbations generated by
iterative methods are finer compared to the fast method. Also iterative methods do not always select
a point on the border of ✏-neighbourhood as an adversarial image.

12

Workshop track - ICLR 2017

Appendix

Appendix contains following figures:

1. Figure 4 with examples of adversarial images produced by different adversarial methods.
2. Figure 5 with examples of adversarial images for various values of ✏.
3. Figure 6 contain plots of adversarial destruction rates for various image transformations.

Clean image “Fast”; L1 distance to clean image = 32

“Basic iter.”; L1 distance to clean image = 32 “L.l. class”; L1 distance to clean image = 28

Figure 4: Comparison of different adversarial methods with ✏ = 32. Perturbations generated by
iterative methods are finer compared to the fast method. Also iterative methods do not always select
a point on the border of ✏-neighbourhood as an adversarial image.

12

Basic
Iterative
Method

Fast
Gradient

Iterative
Least-Likely
Class Method

Adversarial Examples in the Physical World
(Kurakin, Goodfellow, Bengio, 2017)

Slide credit: Ian Goodfellow 55

56

57
Figure 2. Although state-of-the-art deep neural networks can increasingly recognize natural images (left panel), they also are easily

Deep Neural Networks are Easily Fooled: High
Confidence Predictions for Unrecognizable Images
(Nguyen, Yosinski, Clune, 2014)

Deep Neural Networks are Easily Fooled: High
Confidence Predictions for Unrecognizable Images
(Nguyen, Yosinski, Clune, 2014)

>99.6%
confidences

58

Deep Neural Networks are Easily Fooled: High
Confidence Predictions for Unrecognizable Images
(Nguyen, Yosinski, Clune, 2014)

>99.6%
confidences

59

Adversarial Learning – Failed Defenses

Weight decay

Adding noise
at test time

Adding noise
at train time

Dropout

Ensembles

Multiple glimpses

Generative
pretraining

Removing perturbation
with an autoencoder

Error correcting
codes

Confidence-reducing
perturbation at test time

Various
non-linear units

Double backprop

Slide credit: Ian Goodfellow 60

Adversarial Learning – Defense Techniques
• Two defense techniques
1. Adversarial training (Szegedy et al., 2013)

• a brute force solution where adversarial examples are generated and the model is
explicitly trained not to be fooled by each of them.

• improves the generalization of a machine learning model

2. Defensive distillation (Hinton et al., 2015; Papernot and McDaniel, 2016)
• a strategy where the model is trained to output probabilities of different classes,

rather than hard decisions about which class to output
• smooths the model’s decision surface in adversarial directions exploited by the

adversary

61

Adversarial Training

Labeled as bird

Decrease
probability
of bird class

Still has same label (bird)

Slide credit: Ian Goodfellow 62

Adversarial Training
• Generate adversarial examples and use them while training
• Introduce an adversarial regularization term to the general loss function

63

Adversarial	Training

Training	Target Adversarial	regularizer

Q:	How	can	we	use	adversarial	examples	to	train	a	robust	network?	

Adversarial	examples	in	the	physical	world	- Kurakin,	et	al	- 2016

A:	Train	it	both	on	natural	images	and	constructed	adversarial	images.

training target adversarial regularization

Virtual Adversarial Training
Unlabeled; model

guesses it’s probably
a bird, maybe a plane

Adversarial
perturbation
intended to

change the guess

New guess should
match old guess

(probably bird, maybe plane)

Slide credit: Ian Goodfellow 64

Training on Adversarial Examples

(Goodfellow 2016)

Training on Adversarial Examples

0 50 100 150 200 250 300

Training time (epochs)

10�2

10�1

100

T
es

t
m

is
cl

a
ss

ifi
ca

ti
o
n

ra
te Train=Clean, Test=Clean

Train=Clean, Test=Adv

Train=Adv, Test=Clean

Train=Adv, Test=Adv

Slide credit: Ian Goodfellow 65

Adversarial Training of Other Models
• Linear models: SVM / linear regression cannot learn a step function, so

adversarial training is less useful, very similar to weight decay

• k-NN: adversarial training is prone to overfitting.

• Takeway: neural nets can actually become more secure than other models.
• Adversarially trained neural nets have the best empirical success rate on

adversarial examples of any machine learning model.

66

Defensive Distillation
• Neural networks typically produce class probabilities by using a “softmax”

output layer:

• Defensive distillation changes the training procedure essentially by
re-configuring this “softmax” layer.

• It smooths the model’s decision surface, eliminates overfitting, and thus
increase robustness of the deep neural network model.

• Simplest form: Use the original model's predictions as the groundtruth
labels to train the distilled model.

mapping from input vectors to output vectors. For cumbersome models that learn to discriminate
between a large number of classes, the normal training objective is to maximize the average log
probability of the correct answer, but a side-effect of the learning is that the trained model assigns
probabilities to all of the incorrect answers and even when these probabilities are very small, some
of them are much larger than others. The relative probabilities of incorrect answers tell us a lot about
how the cumbersome model tends to generalize. An image of a BMW, for example, may only have
a very small chance of being mistaken for a garbage truck, but that mistake is still many times more
probable than mistaking it for a carrot.

It is generally accepted that the objective function used for training should reflect the true objective
of the user as closely as possible. Despite this, models are usually trained to optimize performance
on the training data when the real objective is to generalize well to new data. It would clearly
be better to train models to generalize well, but this requires information about the correct way to
generalize and this information is not normally available. When we are distilling the knowledge
from a large model into a small one, however, we can train the small model to generalize in the same
way as the large model. If the cumbersome model generalizes well because, for example, it is the
average of a large ensemble of different models, a small model trained to generalize in the same way
will typically do much better on test data than a small model that is trained in the normal way on the
same training set as was used to train the ensemble.

An obvious way to transfer the generalization ability of the cumbersome model to a small model is
to use the class probabilities produced by the cumbersome model as “soft targets” for training the
small model. For this transfer stage, we could use the same training set or a separate “transfer” set.
When the cumbersome model is a large ensemble of simpler models, we can use an arithmetic or
geometric mean of their individual predictive distributions as the soft targets. When the soft targets
have high entropy, they providemuch more information per training case than hard targets and much
less variance in the gradient between training cases, so the small model can often be trained on much
less data than the original cumbersome model and using a much higher learning rate.

For tasks like MNIST in which the cumbersome model almost always produces the correct answer
with very high confidence, much of the information about the learned function resides in the ratios
of very small probabilities in the soft targets. For example, one version of a 2 may be given a
probability of 10−6 of being a 3 and 10−9 of being a 7 whereas for another version it may be the
other way around. This is valuable information that defines a rich similarity structure over the data
(i. e. it says which 2’s look like 3’s and which look like 7’s) but it has very little influence on the
cross-entropy cost function during the transfer stage because the probabilities are so close to zero.
Caruana and his collaborators circumvent this problem by using the logits (the inputs to the final
softmax) rather than the probabilities produced by the softmax as the targets for learning the small
model and they minimize the squared difference between the logits produced by the cumbersome
model and the logits produced by the small model. Our more general solution, called “distillation”,
is to raise the temperature of the final softmax until the cumbersome model produces a suitably soft
set of targets. We then use the same high temperature when training the small model to match these
soft targets. We show later that matching the logits of the cumbersome model is actually a special
case of distillation.

The transfer set that is used to train the small model could consist entirely of unlabeled data [1]
or we could use the original training set. We have found that using the original training set works
well, especially if we add a small term to the objective function that encourages the small model
to predict the true targets as well as matching the soft targets provided by the cumbersome model.
Typically, the small model cannot exactly match the soft targets and erring in the direction of the
correct answer turns out to be helpful.

2 Distillation

Neural networks typically produce class probabilities by using a “softmax” output layer that converts
the logit, zi, computed for each class into a probability, qi, by comparing zi with the other logits.

qi =
exp(zi/T)

∑

j exp(zj/T)
(1)

2

T: a temperature that is normally set to 1
qi: class probability

67

Defensive Distillation

68

7

Class
Probabilities
Knowledge

 Training Data X

DNN F trained at temperature T

 Training Labels Y

Probability Vector Predictions F(X)

 Training Data X

DNN trained at temperature T

 Training Labels F(X)

Probability Vector Predictions .

Initial Network Distilled Network

1

2

3

4

5

0
1
0
0

0.02
0.92
0.04
0.02

0.02
0.92
0.04
0.02

0.03
0.93
0.01
0.03

F

d(X)

F

d(X)

0.02
0.92
0.04
0.02

Fig. 5: An overview of our defense mechanism based on a transfer of knowledge contained in probability vectors through
distillation: We first train an initial network F on data X with a softmax temperature of T . We then use the probability vector
F (X), which includes additional knowledge about classes compared to a class label, predicted by network F to train a distilled
network F

d at temperature T on the same data X .

B. Distillation as a Defense

We now introduce defensive distillation, which is the tech-
nique we propose as a defense for DNNs used in adversarial
settings, when adversarial samples cannot be permitted. De-
fensive distillation is adapted from the distillation procedure,
presented in section II, to suit our goal of improving DNN
classification resilience in the face of adversarial perturbations.

Our intuition is that knowledge extracted by distillation, in
the form of probability vectors, and transferred in smaller
networks to maintain accuracies comparable with those of
larger networks can also be beneficial to improving gener-
alization capabilities of DNNs outside of their training dataset
and therefore enhances their resilience to perturbations. Note
that throughout the remainder of this paper, we assume that
considered DNNs are used for classification tasks and designed
with a softmax layer as their output layer.

The main difference between defensive distillation and the
original distillation proposed by Hinton et al. [19] is that we
keep the same network architecture to train both the original
network as well as the distilled network. This difference is
justified by our end which is resilience instead of compres-
sion. The resulting defensive distillation training procedure is
illustrated in Figure 5 and outlined as follows:

1) The input of the defensive distillation training algorithm
is a set X of samples with their class labels. Specifically,
let X 2 X be a sample, we use Y (X) to denote its
discrete label, also referred to as hard label. Y (X) is an
indicator vector such that the only non-zero element cor-
responds to the correct class’ index (e.g. (0, 0, 1, 0, . . . , 0)
indicates that the sample is in the class with index 2).

2) Given this training set {(X, Y (X)) : X 2 X}, we
train a deep neural network F with a softmax output
layer at temperature T . As we discussed before, F (X)
is a probability vector over the class of all possible
labels. More precisely, if the model F has parameters

✓F , then its output on X is a probability distribution
F (X) = p(·|X, ✓F), where for any label Y in the label
class, p(Y |X, ✓F) gives a probability that the label is Y .
To simplify our notation later, we use Fi(X) to denote
the probability of input X to be in class i 2 0..N � 1
according to model F with parameters ✓F .

3) We form a new training set, by consider samples of the
form (X, F (X)) for X 2 X . That is, instead of using
hard class label Y (X) for X , we use the soft-target F (X)
encoding F ’s belief probabilities over the label class.

4) Using the new training set {(X, F (X)) : X 2 X} we
then train another DNN model F

d, with the same neural
network architecture as F , and the temperature of the
softmax layer remains T . This new model is denoted as
F

d and referred to as the distilled model.

Again, the benefit of using soft-targets F (X) as training
labels lies in the additional knowledge found in probability
vectors compared to hard class labels. This additional entropy
encodes the relative differences between classes. For instance,
in the context of digit recognition developed later in section V,
given an image X of some handwritten digit, model F may
evaluate the probability of class 7 to F7(X) = 0.6 and the
probability of label 1 to F1(X) = 0.4, which then indicates
some structural similarity between 7s and 1s.

Training a network with this explicit relative information
about classes prevents models from fitting too tightly to the
data, and contributes to a better generalization around training
points. Note that the knowledge extraction performed by dis-
tillation is controlled by a parameter: the softmax temperature
T . As described in section II, high temperatures force DNNs to
produce probabilities vectors with large values for each class.
In sections IV and V, we make this intuition more precise
with a theoretical analysis and an empirical evaluation.

Papernot et al., 2016

where T is a temperature that is normally set to 1. Using a higher value for T produces a softer
probability distribution over classes.

In the simplest form of distillation, knowledge is transferred to the distilled model by training it on
a transfer set and using a soft target distribution for each case in the transfer set that is produced by
using the cumbersome model with a high temperature in its softmax. The same high temperature is
used when training the distilled model, but after it has been trained it uses a temperature of 1.

When the correct labels are known for all or some of the transfer set, this method can be significantly
improved by also training the distilled model to produce the correct labels. One way to do this is
to use the correct labels to modify the soft targets, but we found that a better way is to simply use
a weighted average of two different objective functions. The first objective function is the cross
entropy with the soft targets and this cross entropy is computed using the same high temperature in
the softmax of the distilled model as was used for generating the soft targets from the cumbersome
model. The second objective function is the cross entropy with the correct labels. This is computed
using exactly the same logits in softmax of the distilled model but at a temperature of 1. We found
that the best results were generally obtained by using a condiderably lower weight on the second
objective function. Since the magnitudes of the gradients produced by the soft targets scale as 1/T 2

it is important to multiply them by T 2 when using both hard and soft targets. This ensures that the
relative contributions of the hard and soft targets remain roughly unchanged if the temperature used
for distillation is changed while experimenting with meta-parameters.

2.1 Matching logits is a special case of distillation

Each case in the transfer set contributes a cross-entropy gradient, dC/dzi, with respect to each
logit, zi of the distilled model. If the cumbersome model has logits vi which produce soft target
probabilities pi and the transfer training is done at a temperature of T , this gradient is given by:

∂C

∂zi
=

1

T
(qi − pi) =

1

T

(

ezi/T
∑

j e
zj/T

−
evi/T

∑

j e
vj/T

)

(2)

If the temperature is high compared with the magnitude of the logits, we can approximate:

∂C

∂zi
≈

1

T

(

1 + zi/T

N +
∑

j zj/T
−

1 + vi/T

N +
∑

j vj/T

)

(3)

If we now assume that the logits have been zero-meaned separately for each transfer case so that
∑

j zj =
∑

j vj = 0 Eq. 3 simplifies to:

∂C

∂zi
≈

1

NT 2
(zi − vi) (4)

So in the high temperature limit, distillation is equivalent to minimizing 1/2(zi− vi)2, provided the
logits are zero-meaned separately for each transfer case. At lower temperatures, distillation pays
much less attention to matching logits that are much more negative than the average. This is poten-
tially advantageous because these logits are almost completely unconstrained by the cost function
used for training the cumbersome model so they could be very noisy. On the other hand, the very
negative logits may convey useful information about the knowledge acquired by the cumbersome
model. Which of these effects dominates is an empirical question. We show that when the distilled
model is much too small to capture all of the knowledege in the cumbersome model, intermedi-
ate temperatures work best which strongly suggests that ignoring the large negative logits can be
helpful.

3 Preliminary experiments on MNIST

To see how well distillation works, we trained a single large neural net with two hidden layers
of 1200 rectified linear hidden units on all 60,000 training cases. The net was strongly regularized
using dropout and weight-constraints as described in [5]. Dropout can be viewed as a way of training
an exponentially large ensemble of models that share weights. In addition, the input images were

3

Defensive Distillation
• This strategy include the following steps (Papernot and McDaniel, 2016):
1. Train a first instance of the neural network by using the training data

(X, Y) where the labels Y indicate the correct class of samples X.
2. Infer predictions of the training data and provide a new training dataset

(X,f(X)) where the new class labels are the probability vectors quantifying
the likeliness of X being in each class.

3. Train a distilled instance of the neural network f using this newly labeled
dataset (X,f(X)).

69

While training the first and the distilled network, use the same high T
values. At test time, deploy the distilled network by setting T back to 1.

12

0

10

20

30

40

50

60

70

80

90

100

1 10 100

Ad
ve

rs
ar

ia
l S

am
pl

e
Su

cc
es

s
R

at
e

Distillation Temperature

Adversarial Samples Success Rate (MNIST) Adversarial Samples Baseline Rate (MNIST)
Adversarial Samples Success Rate (CIFAR10) Adversarial Samples Baseline Rate (CIFAR10)

Fig. 7: An exploration of the temperature parameter space: for 900 targets against the MNIST and CIFAR10 based models
and several distillation temperatures, we plot the percentage of targets achieved by crafting an adversarial sample while altering
at most 112 features. Baselines for models trained without distillation are in dashes. Note the horizontal logarithmic scale.

for both architectures and provides exact figures. In other
words, the rate plotted is the number of adversarial sample
targets that were reached. Two interesting observations can be
made: (1) increasing the temperature will generally speaking
make adversarial sample crafting harder, and (2) there is an
elbow point after which the rate largely remains constant
(⇡ 0% for MNIST and ⇡ 5% for CIFAR10).

Observation (1) validates analytical results from Section III
showing distilled network resilience to adversarial samples:
the success rate of adversarial crafting is reduced from 95.89%
without distillation to 0.45% with distillation (T = 100) on
the MNIST based DNN, and from 87.89% without distillation
to 5.11% with distillation (T = 100) on the CIFAR10 DNN.

The temperature corresponding to the curve elbow is linked
to the role temperature plays within the softmax layer. Indeed,
temperature is used to divide logits given as inputs to the
softmax layer, in order to provide more discreet or smoother
distributions of probabilities for classes. Thus, one can make
the hypothesis that the curve’s elbow is reached when the tem-
perature is such that increasing it further would not make the
distribution smoother because probabilities are already close
to 1/N where N is the number of classes. We confirm this
hypothesis by computing the average maximum probability
output by the CIFAR10 DNN: it is equal to 0.72 for T = 1,
to 0.14 for T = 20, and to 0.11 for T = 40. Thus, the elbow
point at T = 40 correspond to probabilities near 1/N = 0.1.

Classification Accuracy - The next set of experiments
sought to measure the impact of the approach on accuracy. For
each knowledge transfer temperature T used in the previous
set of experiments, we compute the variation of classifica-
tion accuracy between the models FMNIST , FCIFAR10 and
F

d
MNIST , F

d
CIFAR10, respectively trained without distillation

and with distillation at temperature T . For each model, the
accuracy is computed using all 10, 000 samples from the
corresponding test set (from MNIST for the first and from
CIFAR10 for the second model). Recall that the baseline
rate, meaning the accuracy rate corresponding to training

-2.0%

-1.5%

-1.0%

-0.5%

0.0%

0.5%

1.0%

1.5%

1 2 5 10 20 30 40 50 100

Ac
cu

ra
cy

 V
ar

ia
tio

n
 a

fte
r D

is
til

la
tio

n

Distillation Temperature

MNIST Test Set Accuracy Variation CIFAR10 Test Set Accuracy Variation

Fig. 8: Influence of distillation on accuracy: we plot the
accuracy variations of our two architectures for a training with
and without defensive distillation. These rates were evaluated
on the corresponding test set for various temperature values.

performed without distillation, which we computed previously
was 99.51% for model FMNIST and 80.95% for model
FCIFAR10. The variation rates for the set of distillation
temperatures are shown in Figure 8.

One can observe that variations in accuracy introduced by
distillation are moderate. For instance, the accuracy of the
MNIST based model is degraded by less than 1.28% for all
temperatures, with for instance an accuracy of 99.05% for
T = 20, which would have been state of the art until very
recently. Similarly, the accuracy of the CIFAR10 based model
is degraded by at most 1.37%. It also potentially improves
it, as some variations are positive, notably for the CIFAR10
model (the MNIST model is hard to improve because its
accuracy is already close to a 100%). Although providing
a quantitative understanding of this potential for accuracy
improvement is outside the scope of this paper, we believe
that it stems from the generalization capabilities favored by

Accuracy Variation after Distillation

Defensive Distillation
• Distillation at high temperatures improves the smoothness of the

network, and reduces its sensitivity to small input variations.

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

At
ta

ck
 S

uc
ce

ss
 R

at
e

(%
)

Softmax Temperature during Distillation

Success Rate (on distilled network) Baseline Success Rate (no distillation)

Figure 1: Success of the Fast Gradient Sign Method [2] when defensive distilla-
tion is applied to the MNIST model, as described in [7].

We reproduce the experimental setup described in [7]. It considers a 9 layer
deep neural network classifying handwritten digits of the MNIST dataset. We
train a baseline network without distillation. It achieves 99.51% accuracy on
the test set, which is comparable to state-of-the-art performance on this task.
This network can be attacked using the fast gradient sign method [2] with a
success rate of 88.03% when the input variation parameter is set to " = 0.3. We
then train a collection of distilled networks for several temperatures T ranging
from 1 to 100, and measure the success of the attack for each of these networks
by crafting an adversarial example for each of the 10, 000 test set samples.
The results are reported in Figure 1. As temperature increases, the attack is
mitigated with a success rate smaller than 1.5% at a temperature of T = 100.

4 Conclusion

We empirically demonstrated that defensive distillation mitigates adversarial
samples crafted using the fast gradient sign method introduced in [2], in addition
to those crafted using the Jacobian-based iterative approach introduced in [5].

3

On the MNIST model - a 9 layer deep
neural network with a 99.5% test accuracy
(Papernot and McDaniel, 2016)

70

Distillation and Sensitivity
• Distillation reduces gradients exploited by adversaries to craft perturbations.

10,000 samples from the CIFAR10 test set into bins according to the mean value of their adversarial gradient
amplitude. (Papernot et al., 2016)

13

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

No Distillation T=1 T=2 T=5 T=10 T=20 T=30 T=40 T=50 T=100

F
re

q
u

e
n

cy
 o

f A
d

ve
rs

a
ri

a
l G

ra
d

ie
n

t
M

e
a

n
 A

m
p

lit
u

d
e

s

Distillation Temperature

0 - 10^-40 10^-40 - 10^-35 10^-35 - 10^-30 10^-30 - 10^-25 10^-25 - 10^-20 10^-20 - 10^-15 10^-15 - 10^-10 10^-10 - 10^-5 10^-5 - 10^-3 10^-3 - 1

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

No Distillation T=1 T=2 T=5 T=10 T=20 T=30 T=40 T=50 T=100

F
re

q
u

e
n

cy
 o

f A
d

ve
rs

a
ri

a
l G

ra
d

ie
n

t
M

e
a

n

A
m

p
lit

u
d

e
s

Distillation Temperature

0 - 10^-40 10^-40 - 10^-35 10^-35 - 10^-30 10^-30 - 10^-25 10^-25 - 10^-20 10^-20 - 10^-15 10^-15 - 10^-10 10^-10 - 10^-5 10^-5 - 10^-3 10^-3 - 10 � 10�40 10�40 � 10�35 10�35 � 10�30 10�30 � 10�25 10�25 � 10�20 10�20 � 10�15 10�15 � 10�10 10�10 � 10�5 10�5 � 10�3 10�3 � 100

Fig. 9: An exploration of the impact of temperature on the amplitude of adversarial gradients: We illustrate how
adversarial gradients vanish as distillation is performed at higher temperatures. Indeed, for each temperature considered, we
draw the repartition of samples in each of the 10 ranges of mean adversarial gradient amplitudes associated with a distinct
color. This data was collected using all 10, 000 samples from the CIFAR10 test set on the corresponding DNN model.

distillation, as investigated in the analytical study of defensive
distillation conducted previously in Section III.

To summarize, not only distillation improves resilience of
DNNs to adversarial perturbations (from 95.89% to 0.45%
on a first DNN, and from 87.89% to 5.11% on a second
DNN), it also does so without severely impacting classification
correctness (the accuracy variability between models trained
without distillation and with distillation is smaller than 1.37%
for both DNNs). Thus, defensive distillation matches the
second defense requirement from Section II. When deploying
defensive distillation, defenders will have to empirically find a
temperature value T offering a good balance between robust-
ness to adversarial perturbations and classification accuracy.
In our case, for the MNIST model for instance, such a
temperature would be T = 20 according to Figure 7 and 8.
C. Distillation and Sensitivity

The second battery of experiments sought to demonstrate
the impact of distillation on a DNN’s sensitivity to inputs. Our
hypothesis is that our defense mechanism reduces gradients
exploited by adversaries to craft perturbations. To confirm this
hypothesis, we evaluate the mean amplitude of these gradients
on models trained without and with defensive distillation.
In this experiment, we split the 10, 000 samples from the
CIFAR10 test set into bins according to the mean value of
their adversarial gradient amplitude. We train these at varying
temperatures and plot the resulting bin frequencies in Figure 9.

Note that distillation reduces the average absolute value of
adversarial gradients: for instance the mean adversarial gradi-
ent amplitude without distillation is larger than 0.001 for 4763
samples among the 10,000 samples considered, whereas it is
the case only for 172 samples when distillation is performed
at a temperature of T = 100. Similarly, 8 samples are in the
bin corresponding to a mean adversarial gradient amplitude
smaller than 10�40 for the model trained without distillation,
whereas there is a vast majority of samples, namely 7908
samples, with a mean adversarial gradient amplitude smaller

than 10�40 for the model trained with defensive distillation at
a temperature of T = 100. Generally speaking one can observe
that the largest frequencies of samples shifts from higher mean
amplitudes of adversarial gradients to smaller ones.

When the amplitude of adversarial gradients is smaller, it
means the DNN model learned during training is smoother
around points in the distribution considered. This in turns
means that evaluating the sensitivity of directions will be
more complex and crafting adversarial samples will require
adversaries to introduce more perturbation for the same orig-
inal samples. Another observation is that overtraining does
not help because when there is overfitting, the adversarial
gradients progressively increase in amplitude so early stopping
and other similar techniques can help to prevent exploding.
This is further discussed in Section VI. In our case, training for
50 epochs was sufficient for distilled DNN models to achieve
comparable accuracies to original models, and ensured that
adversarial gradients did not explode. These experiments show
that distillation can have a smoothing impact on classification
models learned during training. Indeed, gradients characteriz-
ing model sensitivity to input variations are reduced by factors
larger than 1030 when defensive distillation is applied.

D. Distillation and Robustness

Lastly, we explore the interplay between smoothness of
classifiers and robustness. Intuitively, robustness is the aver-
age minimal perturbation required to produce an adversarial
sample from the distribution modeled by F .

Robustness - Recall the definition of robustness:

⇢adv(F) = Eµ[�adv(X, F)] (10)

where inputs X are drawn from distribution µ that DNN
architecture F is trying to model, and �adv(X, F) is defined
in Equation 4 to be the minimum perturbation required to
misclassify sample X in each of the other classes. We now
evaluate whether distillation effectively increases this robust-
ness metric for our evaluation architectures. To do this without

71

Summary
• Big gains in performance on perceptual tasks by using deep neural

network models.
• Machine learning has not yet reached true human-level performance.
• Adversarial examples show that many modern machine learning

algorithms can be easily fooled.
• Many different ways of attacking deep neural network models.
• Very few ways of defending deep neural network models.

• Recent work (Papernot et al., 2017) considers more realistic threat models
• The adversary have no knowledge of the machine learning architecture and model

parameters. 72

