ayjal:
Attac% on "--1 Netw rks\a

Generaﬁ-A r}sa'fi' W’etworks
fT ﬂ

< 30
Erdem” - Byk vent Karac an. |
cmw acettepe University N5 =] ﬂﬁﬁg

/‘

* Part 1: Attacks on Deep Networks

» Part 2: Generative Adversarial Networks (GANS)
10 Minutes Break

 Part 3: Image Editing with GANs

HACETTEPE
UNIVERSITY
COMPUTER HACETTEPE

VISION LAB UNIVERSITY

o

Deep Convolutional Networks
In 10 mins

15t Era (1940's-1960's): Invention

» Connectionism (Hebb 1940's): complex behaviors arise from interconnected
networks of simple units

 Artificial neurons (Hebb, McCulloch and Pitts 1940's-1950's)

» Perceptron (Rosenblatt 1950's): Single layer with learning rule

linear
weighting

1 . non-linear
b accumulation o

activation

X1 OW1\[A —

xo O We —» I —>» S —>0OP(y=11x,w,b)

Slide adapted from Rob Fergus

279 Era (1980's-1990's): Multi-layered Networks

» Back-propagation (Rumelhart, Hinton and Williams 1986 +others):
effective way to train multi-layered networks

» Convolutional networks (LeCun et al. 1989): architecture adapted for images
(inspired by Hubel and Wiesel's simple/complex cells)

C3:f. maps 16@10x10

C1: feature maps S4: f. maps 16 @5x5
INPUT 6@28x28 <

32x32 S2:f. maps C5: |ayer F6 Iayer OUTPUT

CONN

FuII coanectlon Gaussmn connections
Convolutions Subsampling Convolutlons Subsampllng Full connection

Slide adapted from Rob Fergus

The Deep Learning Era (2011-present)

 Big gains In performance on perceptual tasks:
* Vision
» Speech understanding
» Natural language processing

* Three ingredients:

1. Deep neural network models (supervised training)
2. Big labeled datasets
3. Fast GPU computation

Slide credit: Rob Fergus

Powerful Hardware

* Deep neural nets highly amenable to implementation on Graphics
Processing Units (GPUs)
« Matrix multiplication
2D convolution

* |_atest generation nVidia GPUs (Pascal)
deliver 10 Ttlops

 Faster than fastest computer
in the world in 2000

e 10 million times faster than
1980's Sun workstation

Slide adapted from Rob Fergus

AlexNet: The Model That Changed The History

* Krizhevsky, Sutskever and Hinton (2012)
— 8 layer Convolutional network model [LeCun et al. 1989]
— 7 hidden layers, 650,000 neurons, ~60,000,000 parameters
—Trained on 1.2 million ImageNet images (with labels)
— GPU implementation (50x speedup over CPU)
— Training time: 1 week on pair of GPUs

N — . N S\ -
X\ /l /l 5 \‘~\\ T‘: :::\\ v 3 P c” 3 »__“:_ -
\\ e 3o\ e
/ . e LoE: sae \dense
) 48 S
; 128 RS — —
55 27 P G
1\13 13 13

192 192 128 2048 2048
5\ | BN T
224 . 3} - NIk S| F S [
N 13 5= ense ense
~ N - 27 3 :\\\\ 3 B —(_13~ 13
55 3| N L
N 192 192 128 Max])
: 2048 2048
224\Jistride Max 128 Max pooling
Uof 4 pooling pooling

3 48

lon

Icat

Image Classif

ing:

Supervised Learn

> llCatII

Joshua Drewe

10

Supervised Learning: Image Classification

=

Joshua Drewe

> llCatII

Training: Adjust
model parameters 6
so predicted

labels match true
labels across
training set

T

Modern Convolutional Nets

— 1 3\\\ 3 \:\—‘: N >
N 3 [X
A ENR -
48 192 192 128 2048 2048 \dense
55 27 1% R G
A AV R 13 \ 13
5 3y AN —
224 || | L[| o[2 3 3\ 3 > > >
N N B ' dense | |dense ”
27 N 3| \ A 13
3 1000
192 192 128 Max
: 2048
Max 128 Max pooling 2048
pooling pooling ,
[AlexNet by Krizhevsky et al. 2012]

Excellent performance in most image Millions of parameters learned from data

understanding tasks

Learn a sequence of general-purpose
representations

The "meaning” of the representation is
unclear

Slide credit: Andrea Vedaldi

Convolutions with Filters

 Each filter acts on multiple input channel

— Convolution is local

Filters look locally O
Parameter sharing
— Translation invariant
. X
Filters act the same everywhere d

lattice multiple
structure feature channels

Slide cr¥&Bit"Andrea Vedaldi

13

Convolution H : []

« Convolution = Spatial filtering
(axb)li,j) = ali’,j'bli —i',5 — j
,i/,j/

* Different filters (weights) reveal a different characteristics of the input.

vVecX

14

Convolution H : []

« Convolution = Spatial filtering
(axb)[i,j] = ali',j'Ibli —',j = j']
i,,j/

* Different filters (weights) reveal a different characteristics of the input.

vVecX

15

Convolution H _ []

« Convolution = Spatial filtering
(axb)[i,j] =) ali’,jIbli —',j — j']
,i/,j/

* Different filters (weights) reveal a different characteristics of the input.

vVecX

16

Convolutional Layer

« Multiple filters produce multiple output channels
» For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

activation maps

32

23

>
Convolutional Layer

g .

3 6

We stack these up to get an output of size 28x28x®6.
Slide credit: Alex Karpathy

Pooling Layer

* makes the representations smaller

and more manageable

 Operates over each activation map

independently:

* Max pooling, average pooling, etc.

Single depth slice

1

A lw|lo | =

6
2
2

2
7
1
3

A | O | | P&

max pool with 2x2
filters and stride 2
>

>

Slide adapted from Alex Karpat%

224x224x64
112x112x64

pool

—’

> o 112
224 downsampling

224

18

Fully Connected Layer

 contains neurons that connect to the entire input volume, as in ordinary
Neural Networks

RELU RELU RELU RELU RELU RELU

CONV lCONVl CONV lCONVl CONV lCONVl FC

bbb b

o | |

| [
- i car
o |- | [filick
- | Bitplane
i ¥ N

| Eﬂ ﬁworse

1 B

PTG T

Ll

20

Feature Learning

 Hierarchical layer structure allows to learn hierarchical filters (features).

Low-Level| |Mid-Level| |High-Level Trainable
— — —
Feature Feature Feature Classifier

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]
Slide credit: Yann LeCun

Visualizing The Representation
t-SN

- visualization

L ;'?;»,' " &17 :’1‘ 3
’%ﬁ%%:%@}ig ;y' :‘:&’ 7 ;%%5‘1
&\
s
(van der Maaten & Hinton)

» Embed high-dimensional points so

that locally, pairwise distances are
conserved

ﬁé‘ Y/
&y < :,Gg::.‘?' T, “l“ U 7 R A 'f'rg?:""'l: s {ﬁ//’ I’f// é//'///:
e il : _ AT AV
ﬁ%&f«‘g@“?gﬁﬁ 2 ARSI et S
A, u‘: ‘c A S5 . A 4 K . I,,,(I i
%ﬁi}‘é‘} f:‘é‘ : g"%ﬁaﬁ%‘?ﬁé ?,':55 J VR ':;’u'ﬂg?”i’"""fo
) X/ () o &] :55 b‘as S 5% 5 Ao l’l ¢f
i 33;%’33’;’,{ "4l i
bl L/ 'y i3 'l'-',u‘ L it
" " " ‘5-‘%"’5;;3;5_,'33‘3 :;:%f I ’:#‘:\‘ﬂ: "h«: ‘.II“‘l‘l’q
* .&. similar things end up In similar R 1K A
' ' ' ' s ;: =* “\U\\"“ !
places. dissimilar things end up a0
wherever
* Right: Example embedding of
MNIST digits (0-9) in 2D

Slide credit: Alex Karpathy

21

Three Years of Progress

AlexNet, 8 layers
(ILSVRC 2012)

| 11x11 conv, 96, /4, pool/2 |

[5x5 conv, 256, pool/2 |

<€

3x3 conv, 384

<«

[3x3 conv, 384

>

[3x3 conv, 256, pool/2 |

<

| fc, 4096

<

| fc, 4096

<«

| fc, 1000

VGG, 19 layers
(ILSVRC 2014)

* Very deep
« Simply deep

3x3 cony, 64

v

3x3 conv, 64, pool/2

3x3 cony, 128

NIER

3x3 conv, 128, pool/2

<«

3x3 cony, 256

<«

3x3 conv, 256

<«

3x3 conv, 256

<«

3x3 conv, 256, pool/2

<«

3x3 conv, 512

<«

3x3 cony, 512

<«

3x3 cony, 512

<«

3x3 conv, 512, pool/2

<«

3x3 cony, 512

<«

3x3 cony, 512

<«

3x3 cony, 512

<«

3x3 convy, 512, pool/2

a
<z
(o]

(o))

fc, 4096

v

fc, 1000

GoogleNet,
22 layers

(ILSVRC 2014)

nnnnnnnnnnnn

* Branching
» Bottleneck

« Skip connection

22

Training Deep Neural Networks

* The network Is trained by stochastic gradient descent.
» Backpropagation is used similarly as in a fully connected network,
» Pass gradients through element-wise activation function.

* \We also need to pass gradients through the convolution operation and the
pooling operation.

23

Object Detection Networks

ImageNet
data

backbone l
)

structure
pre-train

Slide credit: Kaiming He

classification
)

network
features

* AlexNet

* VGG-16
 GoogleNet
* ResNet-101

“plug-in”
feature

detection
data

detection l
)

network

fine-tune

e R-CNN

* Fast R-CNN

* Faster R-CNN
 MultiBox

e SSD

independently

developed
detectors

24

ResNet's Object Detection

person 0 998 % \

W™ person: ®

Kaiming He, Xiangyu Zhang,
Shaoqing Ren, & Jian Sun. Deep
Residual Learning for Image
Recognition. CVPR 2016.

Shaoqing Ren, Kaiming He, Ross
Girshick, & Jian Sun. Faster R-
CNN: Towards Real-Time Object
Detection with Region Proposal
Networks. NIPS 2015.

Slide credit: Kaiming He

dlnlng table 0879r T

N\
N

|i ——

7'_E@fss - 0.

ﬁ “IVEY |
cakecakei0B4s I '

Results on COCO

pe| son 0, 947

‘J’

gePerson O 946

26

ResNet's Object Detection Results on COCO

person : 0.989
i refrigerator : 0.979

-~
O
e

knife : 0739

,p”\‘f

Kaiming He, Xiangyu Zhang,
Shaoqing Ren, & Jian Sun. Deep
Residual Learning for Image
Recognition. CVPR 2016.

Shaoqing Ren, Kaiming He, Ross
Girshick, & Jian Sun. Faster R-
CNN: Towards Real-Time Object
Detection with Region Proposal
Networks. NIPS 2015.

Slide credit: Kaiming He

Story isn't over yet!

Story isn't over yet!

... we have reached
the point where ML works,
but let's see how it can be

easily fooled.

Adversarial
Examples

i W e s i e

Al
MONN N R N AR ON
[o 0. s S
P N N S R W o Y

Machine Learning System

achine

Learning
i

System !

e

Ui /

Sample x

Joshua Drewe

> llCatII

f(X) :ytrue

30

Adversarial Examples

Adversarial example a
(indistinguishable from x)

Joshua Drewe

31

Adversarial Examples in The Human Brain

Slide adapted from lan Goodfellow

(Pinna and Gregory, 2002)

These are
concentric
circles,

not intertwined

- spirals.

32

Adversarial Examples

» Adversarial examples pose potential security threats for practical machine
learning systems.

* e.g., hypothetical attacks on autonomous vehicles

Denial of service

e Confusing object

Adversarial @

Harm others Harmself/ passengers . i e MR

“navigable
road”

N\ s
Adversarial input
recognized as “open
space on the road”

Slide adapted from lan Goodfellow

33

Adversarial Examples

e TWO types of adversaries (Papernot and Goodfellow 2016):

1. Poisoning training sets
e interfere with the integrity of the training process

« make modifications to existing training data, or insert additional data in the existing
training set

* Increases the prediction error

2. Forcing models to make mistakes instantly with adversarial examples

* perturb the inputs on which the model makes predictions (after training, during the
inference phase)

 generate "visually random” images that make a lot of sense to a machine learning
system, but no sense at all to us

34

Not just for neural nets

* Linear models
* Logistic regression
» Softmax regression
¢ SVMSs

* Decision trees

* Nearest neighbors

Slide credit: lan Goodfellow

35

Lets fool a binary linear
classifier: (logistic regression)

1

- : _ _ T
P(y_ 1 I a:,w,b) o i _|_e—(wTa:+b) —O'(UJ £B-|-b)

Since the probabilities of class 1 and 0 sum to one, the probability for class 0 s

Ply=0|z;w,b) =1— P(y=1| x;w,b) . Hence, an example is classified as a positive example (y = 1) if

o(wlz +b) > 0.5, or equivalently if the score w'z +b> 0.

Slide credit: Alex Karpathy

36

Lets fool a binary linear classifier:

<— Input example

<«— weights

Slide credit: Alex Karpathy

Ply=1|z;w,b) =

1 4+ e~ (w'z+d) —E

(wT:z: +b)

37

Lets fool a binary linear classifier:

X 2 | 1| 321212 11]|-4]5]1

<— Input example

W -1 -1 1 -1 1 -1 1 1 -1 1

<«— weights

class 1 score = dot product:
=-2+1+3+2+2-2+1-4-5+1=-3

=> probability of class 1is 1/(1+e”(-(-3))) = 0.0474

..e. the classifier is 95% certain that this is class 0 example.

Ply=1|z;w,b) =

Slide credit: Alex Karpathy

1

1 4+ e~ (w'z+d) —E

(wTa: +b)

38

Lets fool a binary linear classifier:

X |21]3|22]2|1]-4]|5]|1]|<«<— inputexample

W -1] -1 1 - 1 -1 1 1 -1 1 | <— weights

adversarial | > > >)) > ? ? ?
X

class 1 score = dot product:
=-2+1+3+2+2-2+1-4-5+1=-3

=> probability of class 11s 1/(1+e”(-(-3))) = 0.0474

.e. the classifier i1s 95% certain that this is class 0 example.

1
Ply=1| zw,b) =

1+ e @it — 2

wlz + b)

Slide credit: Alex Karpathy 39

Lets fool a binary linear classifier:

X |21]3|22]2|1]-4]|5]|1]|<«<— inputexample

W -1] -1 1 - 1 -1 1 1 -1 1 | <— weights

adversarial
X 151-15|135|-25(25 1515 |-35|45 | 1.b

class 1 score before:

2+1+3+2+2-2+1-4-5+1=-3

=> probability of class 1is 1/(1+e”(-(-3))) = 0.0474 Ply—1| 5:w,8) — 1
-1.5+1.54+3.5+2.5+2.5-1.5+1.5-3.5-4.5+1.5 = 2 Y Tt (iiesy)
=> probability of class 1is now 1/(1+e”(-(2))) = 0.88

I.e. we improved the class 1 probability from 5% to 88%

= a(wTa: +b)

Slide credit: Alex Karpathy 40

Lets fool a binary linear classifier:

X |21]3|22]2|1]-4]|5]|1]|<«<— inputexample

W -1] -1 1 - 1 -1 1 1 -1 1 | <— weights

adversarial
X 151-15|135|-25(25 1515 |-35|45 | 1.b

class 1 score before:
2+1+3+2+2-2+1-4-5+1=-3

=> probability of class 1is 1/(1+e”(-(-3))) = 0.0474
-1.5+1.54+3.5+2.5+2.5-1.5+1.5-3.5-4.5+1.5 = 2

=> probability of class 1is now 1/(1+e”(-(2))) = 0.88 (It's significantly easier
I.e. we improved the class 1 probability from 5% to 88% with more numbers, need

smaller nudge for each)
Slide credit: Alex Karpathy 41

This was only with 10 input
dimensions. A 224x224
Input Image has 150,528.

Blog post: Breaking Linear Classifiers on
ImageNet

plane car bird cat deer dog frog horse ship = truck :
Recall CIFAR10 nearclassiiers: I Nl) I 1 L e

ImageNet classifiers:

French loaf
bagel
pretzel

Ice Cream cheeseburger

ice lolly

n] | CONSoOmme - '
n squash . pepper: | orange .
& = butternut squas hu - e - maiE s 4 A ler e |
- . . I 1 : : : =2
ol artichioke = ' e strawberry ' %ppl?«‘.r
ﬂc -
ou

o i alp bubble

meat loaf red wine l
' ‘ cliff .
pizza e cu& eag" 5 coral reef
olcae ballplayer | llow lady's sli buckeye | f
g p'ayc yellow lady's shi - coriliis
groom scuba diver . ggif‘ wm,* C *\l Sgamt
1‘ gyromitra

http://karpathy.github.io/2015/03/30/breaking—convnets/

Slide credit: Alex Karpathy 42

Breaking Linear Classifiers on ImageNet

mix in a tiny bit of
Goldfish classifier weights

100% Goldfish

Slide credit: Alex Karpathy

43

Breaking Linear Classifiers on ImageNet

1.0% kit fox 8.0% goldfish

Slide credit: Alex Karpathy 44

Breaking Linear Classifiers on ImageNet

1.0% kit fox

8.3% goldfish 12.5% daisy

Slide credit: Alex Karpathy

45

Intriguing Properties of Neural Networks
(Szegedy et al,, 2013)

Minimize [|r||2 subject to:

1. flx+r)=1
2. x+7re|0,1]™

f: classifier function
X: Input image

r: distortion

|: target label

~ Minimize c|r| + loss ¢ (z + 7, 1)
- subjecttox +r € [0,1]™

correct +distort ostrich correct +distort ostrich

46

Explaining and Harnessing Adversarial Examples

(Goodfellow et al,, 2014)

..
LY s -
b v e

X
5

=,
X

et A

“panda” ‘ﬁematode”
57.7% confidence 8.2% confidence

Slide credit: lan Goodfellow

“g1ibbon”
99.3 % confidence

47

Explaining and Harnessing Adversarial Examples

(Goodfellow et al,, 2014)

“panda” ‘;hematode”
57.7% confidence 8.2% confidence

Xa,d’v = X - ESlgn(V)(J(X, yt'r"u,e))

“g1ibbon”
99.3 % confidence

-

™. Score of label y;., giVen input image X

Slide credit: lan Goodfellow

e.g. cross entropy loss 48

Explaining and Harnessing Adversarial Examples
(Goodfellow et al,, 2014)

» Perturbation is computed to minimize a specific norm in the input domain
while increasing the model's prediction error

J(Z,0)~ J(x,0) + (& —x) ' Vo J(x).

O
Maximize O
a~ T)
J(x,0)+ (& —x) ViJ(x)
subject to
| | a: o m | | o S 6 ------- Task decision boundary 83 Training points for class 1
Model decision boundary @© Training points for class 2
:> j — m _I_ ESign (Vm J (CE)) . x Test point for class 1 @ Test point for class 2
The Fast Gradient Si gn Method 9 Adversarial example for class 1 @ Adversarial example for class 2

49

Adversarial Examples from Overfitting

Slide credit: lan Goodfellow 50

Adversarial Examples from Excessive Linearity

Slide credit: lan Goodfellow

51

Modern deep nets are very piecewise
linear

Rectified linear unit Maxout
Carefully tuned sigmoid LSTM

l I out out out
I I A '} [}
|
|
| : hid hid hid
I
l l
| inp inp inp

Slide credit: lan Goodfellow

Gradient-based Adversarial Examples

 Fast Gradient Sign (Goodfellow et al,, 2014)
X — X + esign(VXJ(X, ytme))

» Basic Iterative Method (Kurakin et al, 2017)
X0 = X, Xl = Clz‘px,e{X?Vd” + asign(Vx J (X2, ytme))}

ClipX,e {X/} (37, Y, Z) — m1n{255, X(:Ca Y, Z)—I_Ea maX{O7 X<ZC7 Y, Z)_€7 X/<ZC, Y, Z)}}

* [terative Least-Likely Class Method (Kurakin et al, 2017)
yrr = argmin{p(y|X)}
Y
ngv — X7 X]C(de—qul — ClZpX,e {X]C{fdv o OéSigIl (VXJ(X]C{Tdva yLL))}

53

Gradient-based Adversarial Examples

Original Fast

sample Gradient
Basic lterative
lterative Least-Likely
Method Class Method

54

Adversarial Examples in the Physical World
(Kurakin, Goodfellow, Bengio, 2017)

(a) Printout (b) Photo of printout (c) Cropped image

Slide credit: lan Goodfellow

55

Aaversarial Examples In The Physical World
[Urakin A., Goodfellovs |, Bengio. Sqo=204

O
o
e

56

Deep Neural Networks are Easily Fooled: High

Confidence Predictions for Unrecognizable Images
(Nguyen, Yosinski, Clune, 2014)

State-of-the-art DNNs can recognize 2 But DNNs are also easily fooled: images can be produced that are unrecognizable
real images with high confidence to humans, but DNNs believe with 99.99% certainty are natural objects
Input
|
I ‘ l Mutation

\ E \\ Q" Evolved images / ~
" V Za\
-\ ™ -
; = N :
L N - Evolutionary Crossover
= /17/\\7\ _
: 2 t’ : , Algorithm
Guitar Penguin a [T (Guitar Penguin
98.90% 99.99% © 99.99% 99.99% ~_”
Label and Score
Selection
Output

57

Deep Neural Networks are Easily Fooled: High

Confidence Predictions for Unrecognizable Images
(Nguyen, Yosinski, Clune, 2014)

>99.6%

confidences robin cheetah armadillo lesser panda

centipede peacock jackfruit bubble

58

Deep Neural Networks are Easily Fooled: High

Confidence Predictions for Unrecognizable Images

(Nguyen, Yosinski, Clune, 2014)

>99.6%

confidences

baseball

e 3 ' i » ! ! ! !
i i ¥ x ¥ i \
g * ¥ ¥ ¥
¢ 3 ¥ * ¥
’ ;. 4 = ¥
+ 5 ¥ 3 #
5 ! s 2
¥ L ¥ £ 3
1> S ¥ T 7
i L 2 * 2
|3 T 7 . =
§ b * \ 4
g k| ’ A ;
A1 = X £ X b 4
4 5 2 % s
g | Fd | r
5 4 5 ¥
3 ' 4 k! ’
. & . - =
king penguin electric guitar

SERRINRRED
Hispoonooosn

nggsﬂﬂuul
SARIITIRAAR

o
NN
- o =
AR & e BRaN - & -
freight car remote control peacock African grey

59

Adversarial Learning — Failed Defenses

Generlat.lve Removing perturbation
pretraining with an autoencoder
Adding noise
at test time Ensembles
Confidence-reducing Error correcting
perturbation at test time codes
Multiple glimpses
Weight decay
Double backprop Adding noise
Various at train time
non-linear units Dropout

Slide credit: lan Goodfellow

60

Adversarial Learning — Defense Techniques

» Two defense techniques

1. Adversarial training (Szegedy et al, 2013)

* a brute force solution where adversarial examples are generated and the model Is
explicitly trained not to be fooled by each of them.

* Improves the generalization of a machine learning model

2. Defensive distillation (Hinton et al, 2015; Papernot and McDaniel, 2016)

* a strategy where the model is trained to output probabilities of different classes,
rather than hard decisions about which class to output

« smooths the model's decision surface in adversarial directions exploited by the
adversary

61

Adversarial Training

Labeled as bird

probability
of bird class

Slide credit: lan Goodfellow

Still has same label (bird)

62

Adversarial Training

» Generate adversarial examples and use them while training
* Introduce an adversarial regularization term to the general loss function

~

J(0,z,y) =aJ(0,z,y) + (1 — a)J(0,x + esign (VzJ(0,x,y))

training target adversarial regularization

63

Virtual Adversarial Training

Unlabeled; model New guess should
guesses it's probably match old guess
a bird, maybe a plane (probably bird, maybe plane)

Adversarial :
perturbation
intended to

Slide credit: lan Goodfellow

64

Training on Adversarial Examples

109

1 | == |
— =

e

—— Train=Clean, Test=Clean

— Train=Clean, Test=Adv
—— Train=Adv, Test=Clean
—— Train=Adv, Test=Adv E

—
N
ot

p—d
N
(\V)

Test misclassification rate

sol

SRR A R X A A AN AL N RN
| | | | |
0 50 100 150 200 250 300

Slide credit; lan Goodfellow Training time (epochs)

Adversarial Training of Other Models

* Linear models: SVM / linear regression cannot learn a step function, so
adversarial training Is less useful, very similar to weight decay

* k-NN: adversarial training is prone to overfitting.

 Takeway: neural nets can actually become more secure than other models.

 Adversarially trained neural nets have the best empirical success rate on
adversarial examples of any machine learning model.

66

Defensive Distillation

* Neural networks typically produce class probabilities by using a “softmax”
output layer:

g = exp(zi/T) T: a temperature that is normally set to 1
7’ > exp(z;/T) q;: class probability

 Defensive distillation changes the training procedure essentially by
re-configuring this "softmax” layer.

* |t smooths the model's decision surface, eliminates overfitting, and thus
increase robustness of the deep neural network model,

« Simplest form: Use the original model's predictions as the groundtruth
labels to train the distilled model.

67

Defensive Distillation

Ty L Ty
: 0.02 : : 0.03 :
| o0: Probability Vector Predictions F(X) : N Pt Probability Vector Predictions F?(X) :
: 0.02 I ‘ : 0.03 I
! l ! l
| | 0.02 | |
| L0 i
I) I

: DNN F trained at temperature T | e : DNN F¢(X) trained at temperature T [
| |

l | ‘ | |
: | Class : |
l | Probabilities | :
: o ? o | Knowledge : o 882 o |
. ‘ Training Data X o Iraining Labels Y | . ﬁTralnlng Data X 004 Training Labels F(X) |
| 0 | | 0.02 |
| |

: i | 4 |
I Initial Network ___________ ! o _________DistiledNetwork ________ !
. . Papernot et al,, 2016

oCc 1 1 e%i/ T evi/T P

Tk AR D el S
(’izi T T Zjej/ Zjey/

Defensive Distillation

 This strategy include the following steps (Papernot and McDaniel, 2016):

1. Train a first instance of the neural network by using the training data
(X, Y) where the labels Y indicate the correct class of samples X.

2. Infer predictions of the training data and provide a new training dataset
(X,f(X)) where the new class labels are the probability vectors quantifying
the likeliness of X being in each class.

3. Train a distilled instance of the neural network T using this newly labeled
dataset (X,f(X)).

While training the first and the distilled network, use the same high T

values. At test time, deploy the distilled network by setting T back to 1.

69

Defensive Distillation

» Distillation at high temperatures improves the smoothness of the
network, and reduces Its sensitivity to small input variations.

Attack Success Rate (%)

—-Success Rate (on distilled network) —=-Baseline Success Rate (no distillation)

100
90
80
70
60
50
40
30
20
10

0

20

40 60
Softmax Temperature during Distillation

80

100

On the MNIST model - a 9 layer deep

neural network with a 99.5% test accuracy
(Papernot and McDaniel, 2016)

Accuracy Variation after Distillation

-0.5% I I I
1.0%

-1.5%

-2.0%
1 2 5 10 20 30 40 50 100
Distillation Temperature

70

Distillation and Sensitivity

« Distillation reduces gradients exploited by adversaries to craft perturbations.

20— 10740 =107 - 1073 ®1073° —-1073% #107%° - 1072° w107 - 1072 =w1072°—- 107" w107 - 107 w1070 —-107° =w107® —10"2 =103 — 10"

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%
No Distillation T=10 T=20 T=30 T=40 T=100
Distillation Temperature

Frequency of Adversarial Gradient Mean
Amplitudes

10,000 samples from the CIFAR10 test set into bins according to the mean value of their adversarial gradient
amplitude. (Papernot et al, 2016) -

Summary

 Big gains in performance on perceptual tasks by using deep neural
network models.

« Machine learning has not yet reached true human-level performance.

» Adversarial examples show that many modern machine learning
algorithms can be easily fooled.

« Many different ways of attacking deep neural network models,
* VVery few ways of defending deep neural network models.

* Recent work (Papernot et al, 2017) considers more realistic threat models

* The adversary have no knowledge of the machine learning architecture and model
parameters.

/2

