
Aykut Erdem
Computer Vision Lab, Hacettepe University

Part 2 - Generative 
Adversarial Networks

Learning to Generate Johannes Vermeer’s ‘The music lesson’. Left: Tim Jenison’s version (Tim’s Vermeer, 2013) Right: Original  (1662 – 1665)



Deep Supervised Learning: A Success Story

2

Deep CNN

I               am                a         student     <EOS>  Je             suis étudiant

Je            suis étudiant <EOS>

A BiLSTM encoder and 
LSTM-with-attention decoder
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Encoder Decoder

Encoder Decoder

RNN with attention

•Obtain lots of input-output examples
• Train a deep neural network

• Achieve superior results



Discriminative vs. Generative Models
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p(y|x)

“Cat”

Discriminative models 

p(x|y)

Generative models 



Why study deep generative models?
• Go beyond associating inputs to outputs

• Understand high-dimensional, complex probability distributions

• Discover the “true” structure of the data 

• Detect surprising events in the world (anomaly detection)

• Missing Data (semi-supervised learning)

• Generate models for planning (model-based reinforcement learning)

4



5

Q: What are some recent and 
potentially upcoming 
breakthroughs in deep learning?

A: The most important one, in 
my opinion, is adversarial training 
(also called GAN for Generative 
Adversarial Networks) … This, and 
the variations that are now being 
proposed is the most interesting 
idea in the last 10 years in ML, 
in my opinion.

Quora Session with Yann LeCun
July 29, 2016

Why study Generative Adversarial Networks?



Progress in GANs
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Source: https://deephunt.in/the-gan-zoo-79597dc8c347



Generative Modeling
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Generative Modeling
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Assumptions on     :
• tractable sampling
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Training examples Model samples



Generative Modeling
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P
pdata

p
model

Slide adapted from Sebastian Nowozin

Assumptions on     :
• tractable sampling
• tractable likelihood function

P



Three Broad Categories
• Autoregressive Models

• Variational Autoencoders

•Generative Adversarial Networks (GANs)
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Autoregressive Models
• Explicitly model conditional probabilities:

Disadvantages:
• Generation can be too costly
• Generation can not be controlled 

by a latent code

PixelCNN elephants
(van den Ord et al. 2016)
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Each conditional can be 
a complicated neural net

Neural Image Model: Pixel RNN
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Variational Autoencoder
•Maximizes a variational lower bound on log-likelihood of
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Disadvantages:
• Not asymptotically consistent unless 

q is perfect
• Tends to produce blurry samples
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Face samples for 
Labeled Faces in the Wild (LFW) 
(Alec Radford)
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Generative 
Adversarial 
Networks
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GANs



Genetive Adversarial Networks (GANs)

• A game-theoretic 
likelihood free model

Advantages:
• Uses a latent code
• No Markov chains 

needed
• Produces the best 

samples
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Noise 
(random input)

!	~	Uniform+,,

Generative
Model

(Goodfellow et al., 2014)

think of this as 
a transformation 



Genetive Adversarial Networks (GANs)

• A game between a generator              and a discriminator 
§Generator tries to fool discriminator (i.e. generate realistic samples)
§Discriminator tries to distinguish fake from real samples

Noise

D!

{x1, . . . ,xn} ⇠ pdata

G✓(z) D!(x)

Generator 

z
G✓

xfake

Discriminator fake

real

(Goodfellow et al., 2014)
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Intuition behind GANs
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xreal

D!

xfake G✓

: Discriminator (Art Critic)

: Generator (Forger)



Intuition behind GAN Training
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https://www.youtube.com/watch?v=No26JKQKZNE



Training Procedure
• Use SGD on two minibatches simultaneously:

§A minibatch of training examples 

§A minibatch of generated samples 

18

(Goodfellow et al., 2014)
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Figure 1: Generative adversarial nets are trained by simultaneously updating the discriminative distribution
(D, blue, dashed line) so that it discriminates between samples from the data generating distribution (black,
dotted line) p

x

from those of the generative distribution pg (G) (green, solid line). The lower horizontal line is
the domain from which z is sampled, in this case uniformly. The horizontal line above is part of the domain
of x. The upward arrows show how the mapping x = G(z) imposes the non-uniform distribution pg on
transformed samples. G contracts in regions of high density and expands in regions of low density of pg . (a)
Consider an adversarial pair near convergence: pg is similar to pdata and D is a partially accurate classifier.
(b) In the inner loop of the algorithm D is trained to discriminate samples from data, converging to D

⇤(x) =
pdata(x)

pdata(x)+pg(x) . (c) After an update to G, gradient of D has guided G(z) to flow to regions that are more likely
to be classified as data. (d) After several steps of training, if G and D have enough capacity, they will reach a
point at which both cannot improve because pg = pdata. The discriminator is unable to differentiate between
the two distributions, i.e. D(x) = 1

2 .

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our
experiments.
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The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.
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GAN Training: Minimax Game
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(Goodfellow 2016)

Minimax Game

-Equilibrium is a saddle point of the discriminator loss 
-Resembles Jensen-Shannon divergence 
-Generator minimizes the log-probability of the discriminator 
being correct
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Non-Saturating Game
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-Equilibrium no longer describable with a single loss 
-Generator maximizes the log-probability of the discriminator 
being mistaken 
-Heuristically motivated; generator can still learn even when 
discriminator successfully rejects all generator samples

(Goodfellow et al., 2014)

Cross-entropy 
loss for binary 
classification

Generator maximizes the log-probability 
of the discriminator being mistaken 

• Equilibrium of the game
• Minimizes the Jensen-Shannon divergence
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-Equilibrium no longer describable with a single loss 
-Generator maximizes the log-probability of the discriminator 
being mistaken 
-Heuristically motivated; generator can still learn even when 
discriminator successfully rejects all generator samples

(Goodfellow et al., 2014)

Cross-entropy 
loss for binary 
classification

Generator maximizes the log-probability 
of the discriminator being mistaken 

• Equilibrium of the game
• Minimizes the Jensen-Shannon divergence

Important question is 
“Does this converge??”
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Source: Alec Radford

Generating 1D points

(Goodfellow et al., 2014)

Generating images

Source: OpenAI blog
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a) b)

c) d)

Figure 2: Visualization of samples from the model. Rightmost column shows the nearest training example of
the neighboring sample, in order to demonstrate that the model has not memorized the training set. Samples
are fair random draws, not cherry-picked. Unlike most other visualizations of deep generative models, these
images show actual samples from the model distributions, not conditional means given samples of hidden units.
Moreover, these samples are uncorrelated because the sampling process does not depend on Markov chain
mixing. a) MNIST b) TFD c) CIFAR-10 (fully connected model) d) CIFAR-10 (convolutional discriminator
and “deconvolutional” generator)

Figure 3: Digits obtained by linearly interpolating between coordinates in z space of the full model.

1. A conditional generative model p(x | c) can be obtained by adding c as input to both G and D.
2. Learned approximate inference can be performed by training an auxiliary network to predict z

given x. This is similar to the inference net trained by the wake-sleep algorithm [15] but with
the advantage that the inference net may be trained for a fixed generator net after the generator
net has finished training.

3. One can approximately model all conditionals p(x
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) where S is a subset of the indices
of x by training a family of conditional models that share parameters. Essentially, one can use
adversarial nets to implement a stochastic extension of the deterministic MP-DBM [10].

4. Semi-supervised learning: features from the discriminator or inference net could improve perfor-
mance of classifiers when limited labeled data is available.

5. Efficiency improvements: training could be accelerated greatly by devising better methods for
coordinating G and D or determining better distributions to sample z from during training.

This paper has demonstrated the viability of the adversarial modeling framework, suggesting that
these research directions could prove useful.
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(fully-connected model) (convolutional discriminator, 

deconvolutional generator)

(Goodfellow et al., 2014)

• The generator uses 
a mixture of rectifier 
linear activations 
and/or sigmoid 
activations
• The discriminator 

net used maxout
activations. 



Laplacian GANs (LAPGAN) 
• Idea: Combine GAN with a multi-scale image representation 

(Laplacian pyramid) 
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(Denton et al., 2015)
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Figure 2: The training procedure for our LAPGAN model. Starting with a 64x64 input image I from our
training set (top left): (i) we take I0 = I and blur and downsample it by a factor of two (red arrow) to produce
I1; (ii) we upsample I1 by a factor of two (green arrow), giving a low-pass version l0 of I0; (iii) with equal
probability we use l0 to create either a real or a generated example for the discriminative model D0. In the real
case (blue arrows), we compute high-pass h0 = I0 � l0 which is input to D0 that computes the probability of
it being real vs generated. In the generated case (magenta arrows), the generative network G0 receives as input
a random noise vector z0 and l0. It outputs a generated high-pass image h̃0 = G0(z0, l0), which is input to
D0. In both the real/generated cases, D0 also receives l0 (orange arrow). Optimizing Eqn. 2, G0 thus learns
to generate realistic high-frequency structure h̃0 consistent with the low-pass image l0. The same procedure is
repeated at scales 1 and 2, using I1 and I2. Note that the models at each level are trained independently. At
level 3, I3 is an 8⇥8 image, simple enough to be modeled directly with a standard GANs G3 & D3.

we make a stochastic choice (with equal probability) to either (i) construct the coefficients h
k

either
using the standard procedure from Eqn. 3, or (ii) generate them using G

k

:

˜h
k

= G
k

(z
k

, u(I
k+1)) (6)

Note that G
k

is a convnet which uses a coarse scale version of the image l
k

= u(I
k+1) as an input,

as well as noise vector z
k

. D
k

takes as input h
k

or ˜h
k

, along with the low-pass image l
k

(which is
explicitly added to h

k

or ˜h
k

before the first convolution layer), and predicts if the image was real or
generated. At the final scale of the pyramid, the low frequency residual is sufficiently small that it
can be directly modeled with a standard GAN: ˜h

K

= G
K

(z
K

) and D
K

only has h
K

or ˜h
K

as input.
The framework is illustrated in Fig. 2.

Breaking the generation into successive refinements is the key idea in this work. Note that we give
up any “global” notion of fidelity; we never make any attempt to train a network to discriminate
between the output of a cascade and a real image and instead focus on making each step plausible.
Furthermore, the independent training of each pyramid level has the advantage that it is far more
difficult for the model to memorize training examples – a hazard when high capacity deep networks
are used.

As described, our model is trained in an unsupervised manner. However, we also explore variants
that utilize class labels. This is done by add a 1-hot vector c, indicating class identity, as another
conditioning variable for G

k

and D
k

.

3 Model Architecture & Training
We apply our approach to three datasets: (i) CIFAR10 – 32⇥32 pixel color images of 10 different
classes, 100k training samples with tight crops of objects; (ii) STL – 96⇥96 pixel color images of
10 different classes, 100k training samples (we use the unlabeled portion of data); and (iii) LSUN
[30] – ⇠10M images of 10 different natural scene types, downsampled to 64⇥64 pixels.

For each dataset, we explored a variety of architectures for {G
k

, D
k

}. We now detail the best
performing models, selected using a combination of log-likelihood and visual appearance of the
samples. Complete Torch specification files for all models are provided in supplementary material
[4]. For all models, the noise vector z

k

is drawn from a uniform [-1,1] distribution.
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LAPGAN for LSUN Towers

24

(Denton et al., 2015)

Figure 5: 64 ⇥ 64 samples from three different LSUN LAPGAN models (top: tower, middle: bed-
room, bottom: church front). The first column shows the 4⇥ 4 validation set image used to start the
generation process, with subsequent columns showing different draws from the model.
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64×64 pixels 
~700K images



LAPGAN for LSUN Bedrooms
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Figure 5: 64 ⇥ 64 samples from three different LSUN LAPGAN models (top: tower, middle: bed-
room, bottom: church front). The first column shows the 4⇥ 4 validation set image used to start the
generation process, with subsequent columns showing different draws from the model.
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64×64 pixels 
~3M images (Denton et al., 2015)



Deep Convolutional GANs (DCGAN)
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• No fully connected layers
• Batch Normalization

(Ioffe and Szegedy, 2015)

• Leaky Rectifier in D

• Use Adam (Kingma and Ba, 2015)

• Tweak Adam hyperparameters a bit 
(lr=0.0002, b1=0.5)

• Idea: Tricks to make GAN training more stable
(Radford et al., 2015)



DCGAN for LSUN Bedrooms
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(Radford et al., 2015)
64×64 pixels 
~3M images



Walking 
over the 
latent space
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(Radford et al., 2015)

• Interpolation 
suggests 
non-overfitting 
behavior



Walking over the latent space
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(Radford et al., 2015)



Vector Space Arithmetic
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(Radford et al., 2015)
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Vector Space Arithmetic
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(Radford et al., 2015)
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Subclasses of GANs
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Vanilla GAN
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(Goodfellow et al., 2014)

DCGAN (Radford et al., 2015)



Conditional GAN
• Add conditional variables y into G and D

34

(Mirza and Osindero, 2014)

In the generator the prior input noise p

z

(z), and y are combined in joint hidden representation, and
the adversarial training framework allows for considerable flexibility in how this hidden representa-
tion is composed. 1

In the discriminator x and y are presented as inputs and to a discriminative function (embodied
again by a MLP in this case).

The objective function of a two-player minimax game would be as Eq 2

min

G
max

D
V (D,G) = E

x⇠pdata(x)[logD(x|y)] + E
z⇠pz(z)[log(1�D(G(z|y)))]. (2)

Fig 1 illustrates the structure of a simple conditional adversarial net.

Figure 1: Conditional adversarial net

4 Experimental Results

4.1 Unimodal

We trained a conditional adversarial net on MNIST images conditioned on their class labels, encoded
as one-hot vectors.

In the generator net, a noise prior z with dimensionality 100 was drawn from a uniform distribution
within the unit hypercube. Both z and y are mapped to hidden layers with Rectified Linear Unit
(ReLu) activation [4, 11], with layer sizes 200 and 1000 respectively, before both being mapped to
second, combined hidden ReLu layer of dimensionality 1200. We then have a final sigmoid unit
layer as our output for generating the 784-dimensional MNIST samples.

1For now we simply have the conditioning input and prior noise as inputs to a single hidden layer of a MLP,
but one could imagine using higher order interactions allowing for complex generation mechanisms that would
be extremely difficult to work with in a traditional generative framework.

3

Conditional GAN 
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Auxiliary Classifier GAN
• Every generated sample has a corresponding 

class label

•D is trained to maximize LS + LC
•G is trained to maximize LC − LS

• Learns a representation for z that is independent 
of class label 

36

(Odena et al., 2016)

L

S

= E[logP (S = real | X
real

)] + E[logP (S = fake | X
fake

)]
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|
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|
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Auxiliary Classifier GAN
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(Odena et al., 2016)Under review as a conference paper at ICLR 2017

monarch butterfly goldfinch daisy grey whaleredshank

Figure 1: 128⇥128 resolution samples from 5 classes taken from an AC-GAN trained on the ImageNet dataset.
Note that the classes shown have been selected to highlight the success of the model and are not representative.
Samples from all ImageNet classes are in the Appendix.

In this work we demonstrate that that adding more structure to the GAN latent space along with
a specialized cost function results in higher quality samples. We exhibit 128 ⇥ 128 pixel samples
from all classes of the ImageNet dataset (Russakovsky et al., 2015) with increased global coherence
(Figure 1). Importantly, we demonstrate quantitatively that our high resolution samples are not just
naive resizings of low resolution samples. In particular, downsampling our 128 ⇥ 128 samples
to 32 ⇥ 32 leads to a 50% decrease in visual discriminability. We also introduce a new metric
for assessing the variability across image samples and employ this metric to demonstrate that our
synthesized images exhibit diversity comparable to training data for a large fraction (84.7%) of
ImageNet classes.

2 BACKGROUND

A generative adversarial network (GAN) consists of two neural networks trained in opposition to
one another. The generator G takes as input a random noise vector z and outputs an image X

fake

=

G(z). The discriminator D receives as input either a training image or a synthesized image from
the generator and outputs a probability distribution P (S |X) = D(X) over possible image sources.
The discriminator is trained to maximize the log-likelihood it assigns to the correct source:

L = E[logP (S = real | X
real

)] + E[logP (S = fake | X
fake

)]

The generator is trained to minimize that same quantity.

The basic GAN framework can be augmented using side information. One strategy is to supply
both the generator and discriminator with class labels in order to produce class conditional samples
(Mirza & Osindero, 2014). Class conditional synthesis can significantly improve the quality of
generated samples (van den Oord et al., 2016b). Richer side information such as image captions and
bounding box localizations may improve sample quality further (Reed et al., 2016a;b).

Instead of feeding side information to the discriminator, one can task the discriminator with re-
constructing side information. This is done by modifying the discriminator to contain an auxiliary
decoder network1 that outputs the class label for the training data (Odena, 2016; Salimans et al.,
2016) or a subset of the latent variables from which the samples are generated (Chen et al., 2016).
Forcing a model to perform additional tasks is known to improve performance on the original task
(e.g. Sutskever et al. (2014); Szegedy et al. (2014); Ramsundar et al. (2016)). In addition, an auxil-
iary decoder could leverage pre-trained discriminators (e.g. image classifiers) for further improving
the synthesized images (Nguyen et al., 2016). Motivated by these considerations, we introduce a
model that combines both strategies for leveraging side information. That is, the model proposed
below is class conditional, but with an auxiliary decoder that is tasked with reconstructing class
labels.

2

128×128 resolution samples from 5 classes taken from an AC-GAN trained on the ImageNet



Bidirectional GAN
• Jointly learns a generator network and an 

inference network using an adversarial process.

38

(Donahue et al., 2016; Dumoulin et al., 2016)

Published as a conference paper at ICLR 2017
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Figure 1: The adversarially learned inference (ALI) game.

2015; Lamb et al., 2016; Dosovitskiy & Brox, 2016). While this is certainly a promising research
direction, VAE-GAN hybrids tend to manifest a compromise of the strengths and weaknesses of both
approaches.

In this paper, we propose a novel approach to integrate efficient inference within the GAN framework.
Our approach, called Adversarially Learned Inference (ALI), casts the learning of both an inference
machine (or encoder) and a deep directed generative model (or decoder) in an GAN-like adversarial
framework. A discriminator is trained to discriminate joint samples of the data and the corresponding
latent variable from the encoder (or approximate posterior) from joint samples from the decoder while
in opposition, the encoder and the decoder are trained together to fool the discriminator. Not only are
we asking the discriminator to distinguish synthetic samples from real data, but we are requiring it to
distinguish between two joint distributions over the data space and the latent variables.

With experiments on the Street View House Numbers (SVHN) dataset (Netzer et al., 2011), the
CIFAR-10 object recognition dataset (Krizhevsky & Hinton, 2009), the CelebA face dataset (Liu
et al., 2015) and a downsampled version of the ImageNet dataset (Russakovsky et al., 2015), we show
qualitatively that we maintain the high sample fidelity associated with the GAN framework, while
gaining the ability to perform efficient inference. We show that the learned representation is useful
for auxiliary tasks by achieving results competitive with the state-of-the-art on the semi-supervised
SVHN and CIFAR10 tasks.

2 ADVERSARIALLY LEARNED INFERENCE

Consider the two following probability distributions over x and z:

• the encoder joint distribution q(x, z) = q(x)q(z | x),
• the decoder joint distribution p(x, z) = p(z)p(x | z).

These two distributions have marginals that are known to us: the encoder marginal q(x) is the
empirical data distribution and the decoder marginal p(z) is usually defined to be a simple, factorized
distribution, such as the standard Normal distribution p(z) = N (0, I). As such, the generative
process between q(x, z) and p(x, z) is reversed.

ALI’s objective is to match the two joint distributions. If this is achieved, then we are ensured that all
marginals match and all conditional distributions also match. In particular, we are assured that the
conditional q(z | x) matches the posterior p(z | x).
In order to match the joint distributions, an adversarial game is played. Joint pairs (x, z) are drawn
either from q(x, z) or p(x, z), and a discriminator network learns to discriminate between the two,
while the encoder and decoder networks are trained to fool the discriminator.

The value function describing the game is given by:
min

G

max

D

V (D,G) = E
q(x)[log(D(x, G

z

(x)))] + E
p(z)[log(1�D(G

x

(z), z))]

=

ZZ
q(x)q(z | x) log(D(x, z))dxdz

+

ZZ
p(z)p(x | z) log(1�D(x, z))dxdz.

(1)

2
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(a) SVHN samples. (b) SVHN reconstructions.

Figure 2: Samples and reconstructions on the SVHN dataset. For the reconstructions, odd columns
are original samples from the validation set and even columns are corresponding reconstructions (e.g.,
second column contains reconstructions of the first column’s validation set samples).

(a) CelebA samples. (b) CelebA reconstructions.

Figure 3: Samples and reconstructions on the CelebA dataset. For the reconstructions, odd columns
are original samples from the validation set and even columns are corresponding reconstructions.

(a) CIFAR10 samples. (b) CIFAR10 reconstructions.

Figure 4: Samples and reconstructions on the CIFAR10 dataset. For the reconstructions, odd columns
are original samples from the validation set and even columns are corresponding reconstructions.

5

CelebA reconstructions
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Bidirectional GAN
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(Donahue et al., 2016; 
Dumoulin et al., 2016)

PixelVAE: not so bad!

LSUN bedroom scenes ImageNet (small)

LSUN bedrooms Tiny ImageNet



Applications of GANs

40



Semi-supervised Classification

41

(Salimans et al., 2016;
Dumoulin et al., 2016)

Published as a conference paper at ICLR 2017

Figure 6: Latent space interpolations on the CelebA validation set. Left and right columns corre-
spond to the original pairs x1 and x2, and the columns in between correspond to the decoding of
latent representations interpolated linearly from z1 to z2. Unlike other adversarial approaches like
DCGAN (Radford et al., 2015), ALI allows one to interpolate between actual data points.

Using ALI’s inference network as opposed to the discriminator to extract features, we achieve a
misclassification rate that is roughly 3.00 ± 0.50% lower than reported in Radford et al. (2015)
(Table 1), which suggests that ALI’s inference mechanism is beneficial to the semi-supervised
learning task.

We then investigate ALI’s performance when label information is taken into account during training.
We adapt the discriminative model proposed in Salimans et al. (2016). The discriminator takes x and
z as input and outputs a distribution over K + 1 classes, where K is the number of categories. When
label information is available for q(x, z) samples, the discriminator is expected to predict the label.
When no label information is available, the discriminator is expected to predict K + 1 for p(x, z)
samples and k 2 {1, . . . ,K} for q(x, z) samples.

Interestingly, Salimans et al. (2016) found that they required an alternative training strategy for the
generator where it tries to match first-order statistics in the discriminator’s intermediate activations
with respect to the data distribution (they refer to this as feature matching). We found that ALI did
not require feature matching to obtain comparable results. We achieve results competitive with the
state-of-the-art, as shown in Tables 1 and 2. Table 2 shows that ALI offers a modest improvement
over Salimans et al. (2016), more specifically for 1000 and 2000 labeled examples.

Table 1: SVHN test set missclassification rate

.

Model Misclassification rate

VAE (M1 + M2) (Kingma et al., 2014) 36.02

SWWAE with dropout (Zhao et al., 2015) 23.56

DCGAN + L2-SVM (Radford et al., 2015) 22.18

SDGM (Maaløe et al., 2016) 16.61

GAN (feature matching) (Salimans et al., 2016) 8.11± 1.3

ALI (ours, L2-SVM) 19.14± 0.50

ALI (ours, no feature matching) 7.42± 0.65

Table 2: CIFAR10 test set missclassification rate for semi-supervised learning using different numbers
of trained labeled examples. For ALI, error bars correspond to 3 times the standard deviation.

Number of labeled examples 1000 2000 4000 8000
Model Misclassification rate

Ladder network (Rasmus et al., 2015) 20.40

CatGAN (Springenberg, 2015) 19.58

GAN (feature matching) (Salimans et al., 2016) 21.83± 2.01 19.61± 2.09 18.63± 2.32 17.72± 1.82

ALI (ours, no feature matching) 19.98± 0.89 19.09± 0.44 17.99± 1.62 17.05± 1.49

8
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Class-specific Image Generation
• Generates 227x227 realistic images from all 

ImageNet classes

• Combines adversarial training, moment matching, 
denoising autoencoders, and Langevin sampling

42

(Nguyen et al., 2016) 
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Video Generation (Vondrick et al., 2016)
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Beach Golf Train Station



Generative Shape Modeling
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(Wu et al., 2016)

z G(z) in 3D Voxel Space
64×64×64

512×4×4×4
256×8×8×8

128×16×16×16 64×32×32×32

Figure 1: The generator in 3D-GAN. The discriminator mostly mirrors the generator.

developed a recurrent adversarial network for image generation. While previous approaches focus on
modeling 2D images, we discuss the use of an adversarial component in modeling 3D objects.

3 Models
In this section we introduce our model for 3D object generation. We first discuss how we build
our framework, 3D Generative Adversarial Network (3D-GAN), by leveraging previous advances
on volumetric convolutional networks and generative adversarial nets. We then show how to train
a variational autoencoder [Kingma and Welling, 2014] simultaneously so that our framework can
capture a mapping from a 2D image to a 3D object.

3.1 3D Generative Adversarial Network (3D-GAN)
As proposed in Goodfellow et al. [2014], the Generative Adversarial Network (GAN) consists of
a generator and a discriminator, where the discriminator tries to classify real objects and objects
synthesized by the generator, and the generator attempts to confuse the discriminator. In our 3D
Generative Adversarial Network (3D-GAN), the generator G maps a 200-dimensional latent vector z,
randomly sampled from a probabilistic latent space, to a 64⇥ 64⇥ 64 cube, representing an object
G(z) in 3D voxel space. The discriminator D outputs a confidence value D(x) of whether a 3D
object input x is real or synthetic.

Following Goodfellow et al. [2014], we use binary cross entropy as the classification loss, and present
our overall adversarial loss function as

L3D-GAN = logD(x) + log(1�D(G(z))), (1)

where x is a real object in a 64⇥ 64⇥ 64 space, and z is a randomly sampled noise vector from a
distribution p(z). In this work, each dimension of z is an i.i.d. uniform distribution over [0, 1].
Network structure Inspired by Radford et al. [2016], we design an all-convolutional neural
network to generate 3D objects. As shown in Figure 1, the generator consists of five volumetric fully
convolutional layers of kernel sizes 4 ⇥ 4 ⇥ 4 and strides 2, with batch normalization and ReLU
layers added in between and a Sigmoid layer at the end. The discriminator basically mirrors the
generator, except that it uses Leaky ReLU [Maas et al., 2013] instead of ReLU layers. There are no
pooling or linear layers in our network. More details can be found in the supplementary material.
Training details A straightforward training procedure is to update both the generator and the
discriminator in every batch. However, the discriminator usually learns much faster than the generator,
possibly because generating objects in a 3D voxel space is more difficult than differentiating between
real and synthetic objects [Goodfellow et al., 2014, Radford et al., 2016]. It then becomes hard
for the generator to extract signals for improvement from a discriminator that is way ahead, as all
examples it generated would be correctly identified as synthetic with high confidence. Therefore,
to keep the training of both networks in pace, we employ an adaptive training strategy: for each
batch, the discriminator only gets updated if its accuracy in the last batch is not higher than 80%. We
observe this helps to stabilize the training and to produce better results. We set the learning rate of
G to 0.0025, D to 10

�5, and use a batch size of 100. We use ADAM [Kingma and Ba, 2015] for
optimization, with � = 0.5.

3.2 3D-VAE-GAN
We have discussed how to generate 3D objects by sampling a latent vector z and mapping it to the
object space. In practice, it would also be helpful to infer these latent vectors from observations. For
example, if there exists a mapping from a 2D image to the latent representation, we can then recover
the 3D object corresponding to that 2D image.

3



Text-to-Image Synthesis
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(Zhang et al., 2016)

Failure Cases
The main reason for failure cases is that Stage-I GAN fails to generate plausible rough shapes or colors of the objects.

CUB failure cases:

Oxford-102 failure cases:

Stage-II 
images 

Failure Cases
The main reason for failure cases is that Stage-I GAN fails to generate plausible rough shapes or colors of the objects.
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bicubic SRResNet SRGAN original
(21.59dB/0.6423) (23.53dB/0.7832) (21.15dB/0.6868)

Figure 2: From left to right: bicubic interpolation, deep residual network optimized for MSE, deep residual generative
adversarial network optimized for a loss more sensitive to human perception, original HR image. Corresponding PSNR and
SSIM are shown in brackets. [4⇥ upscaling]

perceptual difference between the super-resolved and orig-
inal image means that the recovered image is not photo-
realistic as defined by Ferwerda [16].

In this work we propose a super-resolution generative
adversarial network (SRGAN) for which we employ a
deep residual network (ResNet) with skip-connection and
diverge from MSE as the sole optimization target. Different
from previous works, we define a novel perceptual loss us-
ing high-level feature maps of the VGG network [49, 33, 5]
combined with a discriminator that encourages solutions
perceptually hard to distinguish from the HR reference
images. An example photo-realistic image that was super-
resolved with a 4⇥ upscaling factor is shown in Figure 1.

1.1. Related work

1.1.1 Image super-resolution

Recent overview articles on image SR include Nasrollahi
and Moeslund [43] or Yang et al. [61]. Here we will focus
on single image super-resolution (SISR) and will not further
discuss approaches that recover HR images from multiple
images [4, 15].

Prediction-based methods were among the first methods
to tackle SISR. While these filtering approaches, e.g. linear,
bicubic or Lanczos [14] filtering, can be very fast, they
oversimplify the SISR problem and usually yield solutions
with overly smooth textures. Methods that put particularly
focus on edge-preservation have been proposed [1, 39].

More powerful approaches aim to establish a complex
mapping between low- and high-resolution image informa-
tion and usually rely on training data. Many methods that
are based on example-pairs rely on LR training patches for

which the corresponding HR counterparts are known. Early
work was presented by Freeman et al. [18, 17]. Related ap-
proaches to the SR problem originate in compressed sensing
[62, 12, 69]. In Glasner et al. [21] the authors exploit patch
redundancies across scales within the image to drive the SR.
This paradigm of self-similarity is also employed in Huang
et al. [31], where self dictionaries are extended by further
allowing for small transformations and shape variations. Gu
et al. [25] proposed a convolutional sparse coding approach
that improves consistency by processing the whole image
rather than overlapping patches.

To reconstruct realistic texture detail while avoiding
edge artifacts, Tai et al. [52] combine an edge-directed SR
algorithm based on a gradient profile prior [50] with the
benefits of learning-based detail synthesis. Zhang et al. [70]
propose a multi-scale dictionary to capture redundancies of
similar image patches at different scales. To super-resolve
landmark images, Yue et al. [67] retrieve correlating HR
images with similar content from the web and propose a
structure-aware matching criterion for alignment.

Neighborhood embedding approaches upsample a LR
image patch by finding similar LR training patches in a low
dimensional manifold and combining their corresponding
HR patches for reconstruction [54, 55]. In Kim and Kwon
[35] the authors emphasize the tendency of neighborhood
approaches to overfit and formulate a more general map of
example pairs using kernel ridge regression. The regression
problem can also be solved with Gaussian process regres-
sion [27], trees [46] or Random Forests [47]. In Dai et al.
[6] a multitude of patch-specific regressors is learned and
the most appropriate regressors selected during testing.

Recently convolutional neural network (CNN) based SR

bicubic SRResNet SRGAN original
(21.59dB/0.6423) (23.53dB/0.7832) (21.15dB/0.6868)

Figure 2: From left to right: bicubic interpolation, deep residual network optimized for MSE, deep residual generative
adversarial network optimized for a loss more sensitive to human perception, original HR image. Corresponding PSNR and
SSIM are shown in brackets. [4⇥ upscaling]

perceptual difference between the super-resolved and orig-
inal image means that the recovered image is not photo-
realistic as defined by Ferwerda [16].

In this work we propose a super-resolution generative
adversarial network (SRGAN) for which we employ a
deep residual network (ResNet) with skip-connection and
diverge from MSE as the sole optimization target. Different
from previous works, we define a novel perceptual loss us-
ing high-level feature maps of the VGG network [49, 33, 5]
combined with a discriminator that encourages solutions
perceptually hard to distinguish from the HR reference
images. An example photo-realistic image that was super-
resolved with a 4⇥ upscaling factor is shown in Figure 1.

1.1. Related work

1.1.1 Image super-resolution

Recent overview articles on image SR include Nasrollahi
and Moeslund [43] or Yang et al. [61]. Here we will focus
on single image super-resolution (SISR) and will not further
discuss approaches that recover HR images from multiple
images [4, 15].

Prediction-based methods were among the first methods
to tackle SISR. While these filtering approaches, e.g. linear,
bicubic or Lanczos [14] filtering, can be very fast, they
oversimplify the SISR problem and usually yield solutions
with overly smooth textures. Methods that put particularly
focus on edge-preservation have been proposed [1, 39].

More powerful approaches aim to establish a complex
mapping between low- and high-resolution image informa-
tion and usually rely on training data. Many methods that
are based on example-pairs rely on LR training patches for

which the corresponding HR counterparts are known. Early
work was presented by Freeman et al. [18, 17]. Related ap-
proaches to the SR problem originate in compressed sensing
[62, 12, 69]. In Glasner et al. [21] the authors exploit patch
redundancies across scales within the image to drive the SR.
This paradigm of self-similarity is also employed in Huang
et al. [31], where self dictionaries are extended by further
allowing for small transformations and shape variations. Gu
et al. [25] proposed a convolutional sparse coding approach
that improves consistency by processing the whole image
rather than overlapping patches.

To reconstruct realistic texture detail while avoiding
edge artifacts, Tai et al. [52] combine an edge-directed SR
algorithm based on a gradient profile prior [50] with the
benefits of learning-based detail synthesis. Zhang et al. [70]
propose a multi-scale dictionary to capture redundancies of
similar image patches at different scales. To super-resolve
landmark images, Yue et al. [67] retrieve correlating HR
images with similar content from the web and propose a
structure-aware matching criterion for alignment.

Neighborhood embedding approaches upsample a LR
image patch by finding similar LR training patches in a low
dimensional manifold and combining their corresponding
HR patches for reconstruction [54, 55]. In Kim and Kwon
[35] the authors emphasize the tendency of neighborhood
approaches to overfit and formulate a more general map of
example pairs using kernel ridge regression. The regression
problem can also be solved with Gaussian process regres-
sion [27], trees [46] or Random Forests [47]. In Dai et al.
[6] a multitude of patch-specific regressors is learned and
the most appropriate regressors selected during testing.

Recently convolutional neural network (CNN) based SR
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ŷ

n6
4s

1

n6
4s

1
re

lu
B

N

B
N

Figure 2. An overview of the model architecture. On the left, we depict the overall model architecture following the style in [34]. On the
right, we expand the details of the generator and the discriminator components. The generator G generates an image conditioned on a
synthetic image x

s and a noise vector z. The discriminator D discriminates between real and fake images. The task–specific classifier T
assigns task–specific labels y to an image. A convolution with stride 1 and 64 channels is indicated as n64s1 in the image. lrelu stands for
leaky ReLU nonlinearity. BN stands for a batch normalization layer and FC for a fully connected layer. Note that we are not displaying
the specifics of T as those are different for each task and decoupled from the domain adaptation process.

and non-adapted source images. When training T only
on adapted images, it’s possible to achieve similar perfor-
mance, but doing so may require many runs with different
initializations due to the instability of the model. Indeed,
without training on source as well, the model is free to shift
class assignments (e.g. class 1 becomes 2, class 2 becomes
3 etc) while still being successful at optimizing the training
objective. We have found that training classifier T on both
source and adapted images avoids this scenario and greatly
stabilizes training (See Table 5). Finally, it’s important to
reiterate that once trained, we are free to adapt other images
from the source domain which might use a different label
space (See Table 4).

In our implementation, G is a convolutional neural net-
work with residual connections that maintains the resolu-
tion of the original image as illustrated in figure 2. Our dis-
criminator D is also a convolutional neural network. The
minimax optimization of Equation 1 is achieved by alter-
nating between two steps. During the first step, we up-
date the discriminator and task-specific parameters ✓

D

,✓
T

,
while keeping the generator parameters ✓

G

fixed. During
the second step we fix ✓

D

,✓
T

and update ✓
G

.

3.2. Content–similarity loss

In certain cases, we have prior knowledge regarding the
low-level image adaptation process. For example, we may
expect the hues of the source and adapted images to be the
same. In our case, we render single objects on black back-

grounds and consequently we expect images adapted from
these renderings to have similar foregrounds and different
backgrounds from the equivalent source images. Render-
ers typically provide access to z-buffer masks that allow us
to differentiate between foreground and background pixels.
This prior knowledge can be formalized via the use of an ad-
ditional loss that penalizes large differences between source
and generated images for foreground pixels only. Such a
similarity loss grounds the generation process to the origi-
nal image and helps stabilize the minimax optimization, as
shown in Sect. 4.4 and Table 5. Our optimization objective
then becomes:

min

✓G,✓T

max

✓D

↵L
d

(D,G) + �L
t

(T,G) + �L
c

(G) (4)

where ↵, �, and � are weights that control the interaction of
the losses, and L

c

is the content–similarity loss.
We use a masked pairwise mean squared error, which

is a variation of the pairwise mean squared error (PMSE)
[11]. This loss penalizes differences between pairs of pix-
els rather than absolute differences between inputs and out-
puts. Our masked version calculates the PMSE between the
generated foreground and the source foreground. Formally,
given a binary mask m 2 Rk, our masked-PMSE loss is:
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Abstract

Collecting well-annotated image datasets to train mod-
ern machine learning algorithms is prohibitively expensive
for many tasks. One appealing alternative is rendering syn-
thetic data where ground-truth annotations are generated
automatically. Unfortunately, models trained purely on ren-
dered images often fail to generalize to real images. To ad-
dress this shortcoming, prior work introduced unsupervised
domain adaptation algorithms that attempt to map repre-
sentations between the two domains or learn to extract fea-
tures that are domain–invariant. In this work, we present
a new approach that learns, in an unsupervised manner, a
transformation in the pixel space from one domain to the
other. Our generative adversarial network (GAN)–based
method adapts source-domain images to appear as if drawn
from the target domain. Our approach not only produces
plausible samples, but also outperforms the state-of-the-art
on a number of unsupervised domain adaptation scenarios
by large margins. Finally, we demonstrate that the adap-
tation process generalizes to object classes unseen during
training.

1. Introduction

Large and well–annotated datasets such as ImageNet [9],
COCO [29] and Pascal VOC [12] are considered crucial
to advancing computer vision research. However, creat-
ing such datasets is prohibitively expensive. One alterna-
tive is the use of synthetic data for model training. It has
been a long-standing goal in computer vision to use game
engines or renderers to produce virtually unlimited quan-
tities of labeled data. Indeed, certain areas of research,

(a) Image examples from the Linemod dataset.

(b) Examples generated by our model, trained on Linemod.

Figure 1. RGBD samples generated with our model vs real RGBD
samples from the Linemod dataset [22, 46]. In each subfigure the
top row is the RGB part of the image, and the bottom row is the
corresponding depth channel. Each column corresponds to a spe-
cific object in the dataset. See Sect. 4 for more details.

such as deep reinforcement learning for robotics tasks, ef-
fectively require that models be trained in synthetic do-
mains as training in real–world environments can be ex-
cessively expensive and time–consuming [38, 43]. Conse-
quently, there has been a renewed interest in training mod-
els in the synthetic domain and applying them in real–world
settings [8, 48, 38, 43, 25, 32, 35, 37]. Unfortunately, mod-
els naively trained on synthetic data do not typically gener-
alize to real images.

A common solution to this problem is using unsuper-
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ern machine learning algorithms is prohibitively expensive
for many tasks. One appealing alternative is rendering syn-
thetic data where ground-truth annotations are generated
automatically. Unfortunately, models trained purely on ren-
dered images often fail to generalize to real images. To ad-
dress this shortcoming, prior work introduced unsupervised
domain adaptation algorithms that attempt to map repre-
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a new approach that learns, in an unsupervised manner, a
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method adapts source-domain images to appear as if drawn
from the target domain. Our approach not only produces
plausible samples, but also outperforms the state-of-the-art
on a number of unsupervised domain adaptation scenarios
by large margins. Finally, we demonstrate that the adap-
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training.
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to advancing computer vision research. However, creat-
ing such datasets is prohibitively expensive. One alterna-
tive is the use of synthetic data for model training. It has
been a long-standing goal in computer vision to use game
engines or renderers to produce virtually unlimited quan-
tities of labeled data. Indeed, certain areas of research,
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Figure 1. RGBD samples generated with our model vs real RGBD
samples from the Linemod dataset [22, 46]. In each subfigure the
top row is the RGB part of the image, and the bottom row is the
corresponding depth channel. Each column corresponds to a spe-
cific object in the dataset. See Sect. 4 for more details.
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mains as training in real–world environments can be ex-
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“Maybe in our world lives a happy little tree 
over there.” 
— Bob Ross 
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Evaluating Quality
•Hard to tell if progress is being made by looking at losses

• Inception Score
• Inception Accuracy

§ Report the fraction of the samples for which the Inception network assigned the 
correct label
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Figure 3: Generating high resolution images improves discriminability. Top: Training data and synthesized im-
ages from the zebra class resized to a lower spatial resolution (indicated above) and subsequently artificially
resized to the original resolution. Inception accuracy is shown below the corresponding images. Bottom Left:
Summary of accuracies across varying spatial resolutions for training data and image samples from 64⇥64 and
128⇥ 128 models. Error bar measures standard deviation across 10 subsets of images. Dashed lines highlight
the accuracy at the output spatial resolution of the model. The training data (clipped) achieves accuracies of
24%, 54%, 81% and 81% at resolutions of 32, 64, 128, and 256 respectively. Bottom Right: Comparison of
accuracy scores at 128⇥128 and 32⇥32 spatial resolutions (x and y axis, respectively). Each point represents
an ImageNet class. 84.4% of the classes are below the line of equality. The green dot corresponds to the zebra
class. We also artificially resized 128⇥ 128 and 64⇥ 64 images to 256⇥ 256 as a sanity check to demonstrate
that simply increasing the number of pixels will not increase discriminability.

4.1 GENERATING HIGH RESOLUTION IMAGES IMPROVES DISCRIMINABILITY

Building a class-conditional image synthesis model necessitates measuring the extent to which syn-
thesized images appear to belong to the intended class. In particular, we would like to know that
a high resolution sample is not just a naive resizing of a low resolution sample. Consider a simple
experiment: pretend there exists a model that synthesizes 32⇥32 images. One can trivially increase
the resolution of synthesized images by performing bilinear interpolation. This would yield higher
resolution images, but these images would just be blurry versions of the low resolution images that
are not discriminable. Hence, the goal of an image synthesis model is not simply to produce high
resolution images, but to produce high resolution images that are more discriminable than low reso-
lution images.

To measure discriminability, we feed synthesized images to a pre-trained Inception network
(Szegedy et al., 2015) and report the fraction of the samples for which the Inception network as-
signed the correct label2. We calculate this accuracy measure on a series of real and synthesized im-

2 One could also use the Inception score (Salimans et al., 2016), but our method has several advan-
tages: accuracy figures are easier to interpret than exponentiated KL-divergences; accuracy may be as-
sessed for individual classes; accuracy measures whether a class-conditional model generated samples from
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an ImageNet class. 84.4% of the classes are below the line of equality. The green dot corresponds to the zebra
class. We also artificially resized 128⇥ 128 and 64⇥ 64 images to 256⇥ 256 as a sanity check to demonstrate
that simply increasing the number of pixels will not increase discriminability.
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thesized images appear to belong to the intended class. In particular, we would like to know that
a high resolution sample is not just a naive resizing of a low resolution sample. Consider a simple
experiment: pretend there exists a model that synthesizes 32⇥32 images. One can trivially increase
the resolution of synthesized images by performing bilinear interpolation. This would yield higher
resolution images, but these images would just be blurry versions of the low resolution images that
are not discriminable. Hence, the goal of an image synthesis model is not simply to produce high
resolution images, but to produce high resolution images that are more discriminable than low reso-
lution images.

To measure discriminability, we feed synthesized images to a pre-trained Inception network
(Szegedy et al., 2015) and report the fraction of the samples for which the Inception network as-
signed the correct label2. We calculate this accuracy measure on a series of real and synthesized im-
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sessed for individual classes; accuracy measures whether a class-conditional model generated samples from

4



Measuring Diversity
•MS-SSIM scores [between randomly chosen pairs of images within a given class]
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Figure 4: Examples of different MS-SSIM scores. The top and bottom rows contain AC-GAN samples and
training data, respectively.

Figure 5: (Left) Comparison of the mean MS-SSIM scores between pairs of images within a given class for
ImageNet training data and samples from the GAN (blue line is equality). The horizontal red line marks the
maximum MS-SSIM value across all ImageNet classes. Each point is an individual class. The mean standard
deviation of scores across the training data and the samples was 0.06 and 0.08 respectively. Scores below
the red line (84.7% of classes) arise from classes where GAN training largely succeeded. (Right) Intra-class
MS-SSIM for selected ImageNet classes throughout a training run. Classes that successfully train tend to have
decreasing mean MS-SSIM scores, to a point.

SSIM � 0.25) contain Inception accuracies  1%. These results suggest that GANs that drop modes
are most likely to produce low quality images. Conversely, 78% of classes with high diversity (MS-
SSIM < 0.25) have Inception accuracies that exceed 1%. In comparison, the Inception-v3 model
achieves 78.8% accuracy on average across all 1000 classes (Szegedy et al., 2015). A fraction of the
classes AC-GAN samples reach this level of accuracy. This indicates opportunity for future image
synthesis models.

4.4 COMPARISON TO PREVIOUS RESULTS

Previous quantitative results for image synthesis models trained on ImageNet are reported in terms
of log-likelihood (van den Oord et al., 2016a;b). Log-likelihood is a coarse and potentially inaccu-
rate measure of sample quality (Theis et al., 2015). Addditionally, log-likelihood is intractable to
compute for GANs. Instead we compare with previous state-of-the-art results on CIFAR-10 using a
lower spatial resolution (32 ⇥ 32). Following the procedure in Salimans et al. (2016), we compute

6



Searching for Overfitting
•Nearest Neighbor Analysis

• Latent Space Interpolations
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Figure 6: Inception accuracy vs MS-SSIM for all 1000 ImageNet classes (r2 = �0.16). Samples from AC-
GAN models do not achieve variability at the expense of discriminability.

the Inception score3 for 50000 samples from an AC-GAN with resolution (32 ⇥ 32), split into 10
groups at random. We also compute the Inception score for 25000 extra samples, split into 5 groups
at random. We select the best model based on the first score and report the second score. Performing
a grid search across 27 hyperparameter configurations, we are able to achieve a score of 8.25 ± 0.07
compared to state of the art 8.09 ± 0.07 (Salimans et al., 2016). Moreover, we accomplish this with-
out employing any of the new techniques introduced in that work (i.e. virtual batch normalization,
minibatch discrimination, and label smoothing). This provides additional evidence that AC-GANs
are effective even without the benefit of class splitting (Appendix D).

4.5 SEARCHING FOR SIGNATURES OF OVERFITTING

One possibility that must be investigated is that the AC-GAN has overfit on the training data. As a
first check that the network does not memorize the training data, we identify the nearest neighbors
of image samples in the training data measured by L1 distance in pixel space (Figure 7). The nearest
neighbors from the training data do not resemble the corresponding samples. This provides evidence
that the AC-GAN is not merely memorizing the training data.

Figure 7: Nearest neighbor analysis. (Left) Samples from a single ImageNet class. (Right) Corresponding
nearest neighbor (L1 distance) in training data for each sample.

A more sophisticated method for understanding the degree of overfitting in a model is to explore
that model’s latent space by interpolation. In an overfit model one might observe discrete transitions
in the interpolated images and regions in latent space that do not correspond to meaningful images
(Bengio et al., 2012; Radford et al., 2015; Dinh et al., 2016). Figure 8 (left) highlights interpolations
in the latent space between several image samples. Notably, the generator learned that certain com-
binations of dimensions correspond to semantically meaningful features (e.g. size of the arch, length
of a bird’s beak) and there are no discrete transitions or ‘holes’ in the latent space. A second method
for exploring the latent space of the AC-GAN is to exploit the structure of the model. The AC-GAN
factorizes its representation into class information and a class-independent latent representation z.
Sampling the AC-GAN with z fixed but altering the class label corresponds to generating samples
with the same ‘style’ across multiple classes (Kingma et al., 2014). Figure 8 (right) shows samples

3 The Inception score is given by exp (E

x

[D

KL

(p(y|x) || p(y))]) where x is a particular image, p(y|x)
is the conditional output distribution over the classes in a pre-trained Inception network (Szegedy et al., 2014)
given x, and p(y) is the marginal distribution over the classes.
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Figure 6: Latent space interpolations on the CelebA validation set. Left and right columns corre-
spond to the original pairs x1 and x2, and the columns in between correspond to the decoding of
latent representations interpolated linearly from z1 to z2. Unlike other adversarial approaches like
DCGAN (Radford et al., 2015), ALI allows one to interpolate between actual data points.

Using ALI’s inference network as opposed to the discriminator to extract features, we achieve a
misclassification rate that is roughly 3.00 ± 0.50% lower than reported in Radford et al. (2015)
(Table 1), which suggests that ALI’s inference mechanism is beneficial to the semi-supervised
learning task.

We then investigate ALI’s performance when label information is taken into account during training.
We adapt the discriminative model proposed in Salimans et al. (2016). The discriminator takes x and
z as input and outputs a distribution over K + 1 classes, where K is the number of categories. When
label information is available for q(x, z) samples, the discriminator is expected to predict the label.
When no label information is available, the discriminator is expected to predict K + 1 for p(x, z)
samples and k 2 {1, . . . ,K} for q(x, z) samples.

Interestingly, Salimans et al. (2016) found that they required an alternative training strategy for the
generator where it tries to match first-order statistics in the discriminator’s intermediate activations
with respect to the data distribution (they refer to this as feature matching). We found that ALI did
not require feature matching to obtain comparable results. We achieve results competitive with the
state-of-the-art, as shown in Tables 1 and 2. Table 2 shows that ALI offers a modest improvement
over Salimans et al. (2016), more specifically for 1000 and 2000 labeled examples.

Table 1: SVHN test set missclassification rate

.

Model Misclassification rate

VAE (M1 + M2) (Kingma et al., 2014) 36.02

SWWAE with dropout (Zhao et al., 2015) 23.56

DCGAN + L2-SVM (Radford et al., 2015) 22.18

SDGM (Maaløe et al., 2016) 16.61

GAN (feature matching) (Salimans et al., 2016) 8.11± 1.3

ALI (ours, L2-SVM) 19.14± 0.50

ALI (ours, no feature matching) 7.42± 0.65

Table 2: CIFAR10 test set missclassification rate for semi-supervised learning using different numbers
of trained labeled examples. For ALI, error bars correspond to 3 times the standard deviation.

Number of labeled examples 1000 2000 4000 8000
Model Misclassification rate

Ladder network (Rasmus et al., 2015) 20.40

CatGAN (Springenberg, 2015) 19.58

GAN (feature matching) (Salimans et al., 2016) 21.83± 2.01 19.61± 2.09 18.63± 2.32 17.72± 1.82

ALI (ours, no feature matching) 19.98± 0.89 19.09± 0.44 17.99± 1.62 17.05± 1.49

8
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Problems with Counting
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Mode Collapse

•D in inner loop: convergence to correct distribution
•G in inner loop: place all mass on most likely point

Under review as a conference paper at ICLR 2017

Figure 1: Unrolling the discriminator stabilizes GAN training on a toy 2D mixture of Gaussians
dataset. Columns show a heatmap of the generator distribution after increasing numbers of training
steps. The final column shows the data distribution. The top row shows training for a GAN with
10 unrolling steps. Its generator quickly spreads out and converges to the target distribution. The
bottom row shows standard GAN training. The generator rotates through the modes of the data
distribution. It never converges to a fixed distribution, and only ever assigns significant mass to a
single data mode at once.

responding to. This extra information helps the generator spread its mass to make the next D step
less effective instead of collapsing to a point.

In principle, a surrogate loss function could be used for both D and G. In the case of 1-step unrolled
optimization this is known to lead to convergence for games in which gradient descent (ascent) fails
(Zhang & Lesser, 2010). However, the motivation for using the surrogate generator loss in Section
2.2, of unrolling the inner of two nested min and max functions, does not apply to using a surrogate
discriminator loss. Additionally, it is more common for the discriminator to overpower the generator
than vice-versa when training a GAN. Giving more information to G by allowing it to ‘see into the
future’ may thus help the two models be more balanced.

3 EXPERIMENTS

In this section we demonstrate improved mode coverage and stability by applying this technique
to three datasets of increasing complexity. Evaluation of generative models is a notoriously hard
problem (Theis et al., 2016). As such the de facto standard in GAN literature has become sample
quality as evaluated by a human and/or evaluated by a heuristic (Inception score for example, (Sal-
imans et al., 2016)). While these evaluation metrics do a reasonable job capturing sample quality,
they fail to capture sample diversity. In our first 2 experiments diversity is easily evaluated via visual
inspection. In our last experiment this is not the case, and we will introduce new methods to quantify
coverage of samples.

When doing stochastic optimization, we must choose which minibatches to use in the unrolling
updates in Eq. 7. We experimented with both a fixed minibatch and re-sampled minibatches for
each unrolling step, and found it did not significantly impact the result. We use fixed minibatches
for all experiments in this section.

3.1 MIXTURE OF GAUSSIANS DATASET

To illustrate the impact of discriminator unrolling, we train a simple GAN architecture on a 2D
mixture of 8 Gaussians arranged in a circle. For a detailed list of architecture and hyperparameters
see Appendix A. Figure 1 shows the dynamics of this model through time. Without unrolling the
generator rotates around the valid modes of the data distribution but is never able to spread out
mass. When adding in unrolling steps G quickly learns to spread probability mass and the system
converges to the data distribution.

3.2 PATHOLOGICAL MODELS

To evaluate the ability of this approach to improve trainability, we look to a traditionally challenging
family of models to train – recurrent neural networks (RNN). In this experiment we try to generate
MNIST samples using an LSTM (Hochreiter & Schmidhuber, 1997). MNIST digits are 28x28 pixel

5
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Figure 1: Unrolling the discriminator stabilizes GAN training on a toy 2D mixture of Gaussians
dataset. Columns show a heatmap of the generator distribution after increasing numbers of training
steps. The final column shows the data distribution. The top row shows training for a GAN with
10 unrolling steps. Its generator quickly spreads out and converges to the target distribution. The
bottom row shows standard GAN training. The generator rotates through the modes of the data
distribution. It never converges to a fixed distribution, and only ever assigns significant mass to a
single data mode at once.

responding to. This extra information helps the generator spread its mass to make the next D step
less effective instead of collapsing to a point.

In principle, a surrogate loss function could be used for both D and G. In the case of 1-step unrolled
optimization this is known to lead to convergence for games in which gradient descent (ascent) fails
(Zhang & Lesser, 2010). However, the motivation for using the surrogate generator loss in Section
2.2, of unrolling the inner of two nested min and max functions, does not apply to using a surrogate
discriminator loss. Additionally, it is more common for the discriminator to overpower the generator
than vice-versa when training a GAN. Giving more information to G by allowing it to ‘see into the
future’ may thus help the two models be more balanced.

3 EXPERIMENTS

In this section we demonstrate improved mode coverage and stability by applying this technique
to three datasets of increasing complexity. Evaluation of generative models is a notoriously hard
problem (Theis et al., 2016). As such the de facto standard in GAN literature has become sample
quality as evaluated by a human and/or evaluated by a heuristic (Inception score for example, (Sal-
imans et al., 2016)). While these evaluation metrics do a reasonable job capturing sample quality,
they fail to capture sample diversity. In our first 2 experiments diversity is easily evaluated via visual
inspection. In our last experiment this is not the case, and we will introduce new methods to quantify
coverage of samples.

When doing stochastic optimization, we must choose which minibatches to use in the unrolling
updates in Eq. 7. We experimented with both a fixed minibatch and re-sampled minibatches for
each unrolling step, and found it did not significantly impact the result. We use fixed minibatches
for all experiments in this section.

3.1 MIXTURE OF GAUSSIANS DATASET

To illustrate the impact of discriminator unrolling, we train a simple GAN architecture on a 2D
mixture of 8 Gaussians arranged in a circle. For a detailed list of architecture and hyperparameters
see Appendix A. Figure 1 shows the dynamics of this model through time. Without unrolling the
generator rotates around the valid modes of the data distribution but is never able to spread out
mass. When adding in unrolling steps G quickly learns to spread probability mass and the system
converges to the data distribution.

3.2 PATHOLOGICAL MODELS

To evaluate the ability of this approach to improve trainability, we look to a traditionally challenging
family of models to train – recurrent neural networks (RNN). In this experiment we try to generate
MNIST samples using an LSTM (Hochreiter & Schmidhuber, 1997). MNIST digits are 28x28 pixel
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(Metz et al., 2016)
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Mode collapse causes low output diversity

(Reed et al. 2016)
(Reed et al., 2017)
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Abstract
Automatic synthesis of realistic images from text
would be interesting and useful, but current AI
systems are still far from this goal. However, in
recent years generic and powerful recurrent neu-
ral network architectures have been developed
to learn discriminative text feature representa-
tions. Meanwhile, deep convolutional generative
adversarial networks (GANs) have begun to gen-
erate highly compelling images of specific cat-
egories, such as faces, album covers, and room
interiors. In this work, we develop a novel deep
architecture and GAN formulation to effectively
bridge these advances in text and image model-
ing, translating visual concepts from characters
to pixels. We demonstrate the capability of our
model to generate plausible images of birds and
flowers from detailed text descriptions.

1. Introduction
In this work we are interested in translating text in the form
of single-sentence human-written descriptions directly into
image pixels. For example, “this small bird has a short,
pointy orange beak and white belly” or ”the petals of this
flower are pink and the anther are yellow”. The problem of
generating images from visual descriptions gained interest
in the research community, but it is far from being solved.

Traditionally this type of detailed visual information about
an object has been captured in attribute representations -
distinguishing characteristics the object category encoded
into a vector (Farhadi et al., 2009; Kumar et al., 2009;
Parikh & Grauman, 2011; Lampert et al., 2014), in partic-
ular to enable zero-shot visual recognition (Fu et al., 2014;
Akata et al., 2015), and recently for conditional image gen-
eration (Yan et al., 2015).

While the discriminative power and strong generalization

Proceedings of the 33 rd
International Conference on Machine

Learning, New York, NY, USA, 2016. JMLR: W&CP volume
48. Copyright 2016 by the author(s).

this small bird has a pink 
breast and crown, and black 
primaries and secondaries.

the flower has petals that 
are bright pinkish purple 
with white stigma

this magnificent fellow is 
almost all black with a red 
crest, and white cheek patch.

this white and yellow flower 
have thin white petals and a 
round yellow stamen

Figure 1. Examples of generated images from text descriptions.
Left: captions are from zero-shot (held out) categories, unseen
text. Right: captions are from the training set.

properties of attribute representations are attractive, at-
tributes are also cumbersome to obtain as they may require
domain-specific knowledge. In comparison, natural lan-
guage offers a general and flexible interface for describing
objects in any space of visual categories. Ideally, we could
have the generality of text descriptions with the discrimi-
native power of attributes.

Recently, deep convolutional and recurrent networks for
text have yielded highly discriminative and generaliz-
able (in the zero-shot learning sense) text representations
learned automatically from words and characters (Reed
et al., 2016). These approaches exceed the previous state-
of-the-art using attributes for zero-shot visual recognition
on the Caltech-UCSD birds database (Wah et al., 2011),
and also are capable of zero-shot caption-based retrieval.
Motivated by these works, we aim to learn a mapping di-
rectly from words and characters to image pixels.

To solve this challenging problem requires solving two sub-
problems: first, learn a text feature representation that cap-
tures the important visual details; and second, use these fea-
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Non-convergence
•Optimization algorithms often approach a saddle point or local 

minimum rather than a global minimum

•Game solving algorithms may not approach an equilibrium at all
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Wasserstein GAN
• Objective based on Earth-Mover or Wassertein distance:

• Provides nice gradients over real and fake samples

(Arjovsky et al., 2016)
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Wasserstein GAN
• Wasserstein loss seems to correlate well with image quality.

(Arjovsky et al., 2016)

Figure 3: Training curves and samples at di↵erent stages of training. We can see a clear
correlation between lower error and better sample quality. Upper left: the generator is an
MLP with 4 hidden layers and 512 units at each layer. The loss decreases constistently as
training progresses and sample quality increases. Upper right: the generator is a standard
DCGAN. The loss decreases quickly and sample quality increases as well. In both upper
plots the critic is a DCGAN without the sigmoid so losses can be subjected to comparison.
Lower half: both the generator and the discriminator are MLPs with substantially high
learning rates (so training failed). Loss is constant and samples are constant as well. The
training curves were passed through a median filter for visualization purposes.

4.2 Meaningful loss metric

Because the WGAN algorithm attempts to train the critic f (lines 2–8 in Algo-
rithm 1) relatively well before each generator update (line 10 in Algorithm 1), the
loss function at this point is an estimate of the EM distance, up to constant factors
related to the way we constrain the Lipschitz constant of f .

Our first experiment illustrates how this estimate correlates well with the quality
of the generated samples. Besides the convolutional DCGAN architecture, we also
ran experiments where we replace the generator or both the generator and the critic
by 4-layer ReLU-MLP with 512 hidden units.

Figure 3 plots the evolution of the WGAN estimate (3) of the EM distance
during WGAN training for all three architectures. The plots clearly show that
these curves correlate well with the visual quality of the generated samples.

To our knowledge, this is the first time in GAN literature that such a property is
shown, where the loss of the GAN shows properties of convergence. This property is
extremely useful when doing research in adversarial networks as one does not need

10
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WGAN with gradient penalty 

• Faster convergence and higher-
quality samples than WGAN with 
weight clipping 
• Train a wide variety of GAN 

architectures with almost no 
hyperparameter tuning, including 
discrete models
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(Gulraani et al., 2017)

Samples from a character-level GAN 
language model on Google Billion Word



Boundary Equilibrium GAN (BEGAN) 
• A loss derived from the Wasserstein distance 

for training auto-encoder based GANs

• Wasserstein distance btw. the reconstruction 
losses of real and generated data

• Convergence measure:

• Objective:

68

(a) Generator/Decoder (b) Encoder

Figure 1: Network architecture for the generator and discriminator.

cube of processed data is mapped via fully connected layers, not followed by any non-linearities,
to and from an embedding state h 2 RN

h where N
h

is the dimension of the auto-encoder’s hidden
state.

The generator G : RN

z 7! RN

x uses the same architecture (though not the same weights) as the
discriminator decoder. We made this choice only for simplicity. The input state is z 2 [�1, 1]Nz

sampled uniformly.

We chose a standard, simple, architecture to illustrate the effect of the new equilibrium principle and
loss. Our model is easier to train and simpler than other GANs architectures: no batch normalization,
no dropout, no transpose convolutions and no exponential growth for convolution filters. It might be
possible to further improve our results by using those techniques but this is beyond the scope of this
paper.

4 Experiments

4.1 Setup

We trained our model using Adam with an initial learning rate in [5 ⇥ 10�5, 10�4], decaying by
a factor of 2 when the measure of convergence stalls. Modal collapses or visual artifacts were
observed sporadically with high initial learning rates, however simply reducing the learning rate
was sufficient to avoid them. We trained models for varied resolutions from 32 to 256, adding or
removing convolution layers to adjust for the image size, keeping a constant final down-sampled
image size of 8x8. We used N

h

= N
z

= 64 in most of our experiments with this dataset.

The network is initialized using vanishing residuals. This is inspired from deep residual networks
[7]. For successive same sized layers, the layer’s input is combined with its output: in

x+1 =
carry ⇥ in

x

+ (1� carry)⇥ out
x

. In our experiments, we start with carry = 1 and progressively
decrease it to 0 over 16000 steps. We do this to facilitate gradient propagation early in training; it
improves convergence and image fidelity but is not strictly necessary.

We use a dataset of 360K celebrity face images for training in place of CelebA [10]. This dataset has
a larger variety of facial poses, including rotations around the camera axis. These are more varied
and potentially more difficult to model than the aligned faces from CelebA, presenting an interesting
challenge. We preferred the use of faces as a visual estimator since humans excel at identifying flaws
in faces.

5

lower image diversity because the discriminator focuses more heavily on auto-encoding real images.
We will refer to � as the diversity ratio. There is a natural boundary for which images are sharp and
have details.

3.4 Boundary Equilibrium GAN

The BEGAN objective is:
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L
D

= L(x)� k
t

.L(G(z
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)) for ✓
D

L
G

= L(G(z
G

)) for ✓
G

k
t+1 = k

t

+ �
k

(�L(x)� L(G(z
G

))) for each training step t

We use Proportional Control Theory to maintain the equilibrium E [L(G(z))] = �E [L(x)]. This is
implemented using a variable k

t

2 [0, 1] to control how much emphasis is put on L(G(z
D

)) during
gradient descent. We initialize k0 = 0. �

k

is the proportional gain for k; in machine learning terms,
it is the learning rate for k. We used 0.001 in our experiments. In essence, this can be thought of as
a form of closed-loop feedback control in which k

t

is adjusted at each step to maintain equation 5.

In early training stages, G tends to generate easy-to-reconstruct data for the auto-encoder since
generated data is close to 0 and the real data distribution has not been learned accurately yet. This
yields to L(x) > L(G(z)) early on and this is maintained for the whole training process by the
equilibrium constraint.

The introductions of the approximation in equation 2 and � in equation 5 have an impact on our
modeling of the Wasserstein distance. Consequently, examination of samples generated from various
� values is of primary interest as will be shown in the results section.

In contrast to traditional GANs which require alternating training D and G, or pretraining D, our
proposed method BEGAN requires neither to train stably. Adam [8] was used during training with
the default hyper-parameters. ✓

D

and ✓
G

are updated independently based on their respective losses
with separate Adam optimizers. We typically used a batch size of n = 16.

3.4.1 Convergence measure

Determining the convergence of GANs is generally a difficult task since the original formulation is
defined as a zero-sum game. As a consequence, one loss goes up when the other goes down. The
number of epochs or visual inspection are typically the only practical ways to get a sense of how
training has progressed.

We derive a global measure of convergence by using the equilibrium concept: we can frame the
convergence process as finding the closest reconstruction L(x) with the lowest absolute value of the
instantaneous process error for the proportion control algorithm |�L(x)�L(G(z

G

))|. This measure
is formulated as the sum of these two terms:

M
global

= L(x) + |�L(x)� L(G(z
G

))|

This measure can be used to determine when the network has reached its final state or if the model
has collapsed.

3.5 Model architecture

The discriminator D : RN

x 7! RN

x is a convolutional deep neural network architectured as an auto-
encoder. N

x

= H ⇥ W ⇥ C is shorthand for the dimensions of x where H,W,C are the height,
width and colors. We use an auto-encoder with both a deep encoder and decoder. The intent is to be
as simple as possible to avoid typical GAN tricks.

The structure is shown in figure 1. We used 3x3 convolutions with exponential linear units [3]
(ELUs) applied at their outputs. Each layer is repeated a number of times (typically 2). We observed
that more repetitions led to even better visual results. The convolution filters are increased linearly
with each down-sampling. Down-sampling is implemented as sub-sampling with stride 2 and up-
sampling is done by nearest neighbor. At the boundary between the encoder and the decoder, the

4

as a class of GANs that aims to model the discriminator D(x) as an energy function. This variant
converges more stably and is both easy to train and robust to hyper-parameter variations. The authors
attribute some of these benefits to the larger number of targets in the discriminator. EBGAN likewise
implements its discriminator as an auto-encoder with a per-pixel error.

While earlier GAN variants lacked a measure of convergence, Wasserstein GANs [1] (WGANs)
recently introduced a loss that also acts as a measure of convergence. In their implementation it
comes at the expense of slow training, but with the benefit of stability and better mode coverage.

3 Proposed method

We use an auto-encoder as a discriminator as was first proposed in EBGAN [17]. While typical
GANs try to match data distributions directly, our method aims to match auto-encoder loss distribu-
tions using a loss derived from the Wasserstein distance. This is done using a typical GAN objective
with the addition of an equilibrium term to balance the discriminator and the generator. Our method
has an easier training procedure and uses a simpler neural network architecture compared to typical
GAN techniques.

3.1 Wasserstein distance for auto-encoders

We wish to study the effect of matching the distribution of the errors instead of matching the dis-
tribution of the samples directly. We first show that an auto-encoder loss approximates a normal
distribution, then we compute the Wasserstein distance between the auto-encoder loss distributions
of real and generated samples.

We first introduce L : RN

x 7! R+the loss for training a pixel-wise autoencoder as:

L(v) = |v �D(v)|⌘ where

8
<

:

D : RN

x 7! RN

x is the autoencoder function.
⌘ 2 {1, 2} is the target norm.

v 2 RN

x is a sample of dimension N
x

.

For a sufficient large number of pixels, if we assume that the losses at the pixel level are independent
and identically distributed, then the Central Limit Theorem applies and the overall distribution of
image-wise losses follows an approximate normal distribution. In our model, we use the L1 norm
between an image and its reconstruction as our loss. We found experimentally, for the datasets we
tried, the loss distribution is, in fact, approximately normal.

Given two normal distributions µ1 = N (m1, C1) and µ2 = N (m2, C2) with the means m1,2 2 Rp

and the covariances C1,2 2 Rp⇥p, their squared Wasserstein distance is defined as:

W (µ1, µ2)
2 = ||m1 �m2||22 + trace(C1 + C2 � 2(C

1
/2

2 C1C
1
/2

2 )
1
/2)

We are interested in the case where p = 1. The squared Wasserstein distance then simplifies to:

W (µ1, µ2)
2 = ||m1 �m2||22 + (c1 + c2 � 2

p
c1c2)

We wish to study experimentally whether optimizing ||m1 � m2||22 alone is sufficient to optimize
W 2. This is true when

c1 + c2 � 2
p
c1c2

||m1 �m2||22
is constant or monotonically increasing w.r.t W (1)

This allows us to simplify the problem to:

W (µ1, µ2)
2 _ ||m1 �m2||22 under condition 1 (2)

It is important to note that we are aiming to optimize the Wasserstein distance between loss distri-
butions, not between sample distributions. As explained in the next section, our discriminator is an

2

(a) ALI interpolation (64x64)

(b) PixelCNN interpolation (32x32)

(c) Our results (128x128 with 128 filters)

(d) Mirror interpolations (our results 128x128 with 128 filters)

Figure 4: Interpolations of real images in latent space

Sample diversity, while not perfect, is convincing; the generated images look relatively close to the
real ones. The interpolations show good continuity. On the first row, the hair transitions in a natural
way and intermediate hairstyles are believable, showing good generalization. It is also worth noting
that some features are not represented such as the cigarette in the left image. The second and last
rows show simple rotations. While the rotations are smooth, we can see that profile pictures are not
captured as well as camera facing ones. We assume this is due to profiles being less common in
our dataset. Finally the mirror example demonstrates separation between identity and rotation. A
surprisingly realistic camera-facing image is derived from a single profile image.

4.4 Convergence measure and image quality

The convergence measure M
global

was conjectured earlier to measure the convergence of the BE-
GAN model. As can be seen in figure 5 this measure correlates well with image fidelity. We can also

Figure 5: Quality of the results w.r.t. the measure of convergence (128x128 with 128 filters)

7

lower image diversity because the discriminator focuses more heavily on auto-encoding real images.
We will refer to � as the diversity ratio. There is a natural boundary for which images are sharp and
have details.

3.4 Boundary Equilibrium GAN

The BEGAN objective is:
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We use Proportional Control Theory to maintain the equilibrium E [L(G(z))] = �E [L(x)]. This is
implemented using a variable k

t

2 [0, 1] to control how much emphasis is put on L(G(z
D

)) during
gradient descent. We initialize k0 = 0. �

k

is the proportional gain for k; in machine learning terms,
it is the learning rate for k. We used 0.001 in our experiments. In essence, this can be thought of as
a form of closed-loop feedback control in which k

t

is adjusted at each step to maintain equation 5.

In early training stages, G tends to generate easy-to-reconstruct data for the auto-encoder since
generated data is close to 0 and the real data distribution has not been learned accurately yet. This
yields to L(x) > L(G(z)) early on and this is maintained for the whole training process by the
equilibrium constraint.

The introductions of the approximation in equation 2 and � in equation 5 have an impact on our
modeling of the Wasserstein distance. Consequently, examination of samples generated from various
� values is of primary interest as will be shown in the results section.

In contrast to traditional GANs which require alternating training D and G, or pretraining D, our
proposed method BEGAN requires neither to train stably. Adam [8] was used during training with
the default hyper-parameters. ✓

D

and ✓
G

are updated independently based on their respective losses
with separate Adam optimizers. We typically used a batch size of n = 16.

3.4.1 Convergence measure

Determining the convergence of GANs is generally a difficult task since the original formulation is
defined as a zero-sum game. As a consequence, one loss goes up when the other goes down. The
number of epochs or visual inspection are typically the only practical ways to get a sense of how
training has progressed.

We derive a global measure of convergence by using the equilibrium concept: we can frame the
convergence process as finding the closest reconstruction L(x) with the lowest absolute value of the
instantaneous process error for the proportion control algorithm |�L(x)�L(G(z

G

))|. This measure
is formulated as the sum of these two terms:

M
global

= L(x) + |�L(x)� L(G(z
G

))|

This measure can be used to determine when the network has reached its final state or if the model
has collapsed.

3.5 Model architecture

The discriminator D : RN

x 7! RN

x is a convolutional deep neural network architectured as an auto-
encoder. N

x

= H ⇥ W ⇥ C is shorthand for the dimensions of x where H,W,C are the height,
width and colors. We use an auto-encoder with both a deep encoder and decoder. The intent is to be
as simple as possible to avoid typical GAN tricks.

The structure is shown in figure 1. We used 3x3 convolutions with exponential linear units [3]
(ELUs) applied at their outputs. Each layer is repeated a number of times (typically 2). We observed
that more repetitions led to even better visual results. The convolution filters are increased linearly
with each down-sampling. Down-sampling is implemented as sub-sampling with stride 2 and up-
sampling is done by nearest neighbor. At the boundary between the encoder and the decoder, the

4

(Berthelot et al., 2017)
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(a) ALI interpolation (64x64)

(b) PixelCNN interpolation (32x32)

(c) Our results (128x128 with 128 filters)

(d) Mirror interpolations (our results 128x128 with 128 filters)

Figure 4: Interpolations of real images in latent space

Sample diversity, while not perfect, is convincing; the generated images look relatively close to the
real ones. The interpolations show good continuity. On the first row, the hair transitions in a natural
way and intermediate hairstyles are believable, showing good generalization. It is also worth noting
that some features are not represented such as the cigarette in the left image. The second and last
rows show simple rotations. While the rotations are smooth, we can see that profile pictures are not
captured as well as camera facing ones. We assume this is due to profiles being less common in
our dataset. Finally the mirror example demonstrates separation between identity and rotation. A
surprisingly realistic camera-facing image is derived from a single profile image.

4.4 Convergence measure and image quality

The convergence measure M
global

was conjectured earlier to measure the convergence of the BE-
GAN model. As can be seen in figure 5 this measure correlates well with image fidelity. We can also

Figure 5: Quality of the results w.r.t. the measure of convergence (128x128 with 128 filters)
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Interpolations in the latent space

Mirror interpolation example


