Generate Johannes Vermeer's ‘The music lesson’. Left: Ti

nison's version (Tim's Vermeer, 2013) Right: Original (1662 — 1665)
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Deep Supervised Learning: A Success Story

» Obtain lots of iInput-output examples

* Train a deep neural network
/ -

Je suis| étudiant <EOS>

I am a student <EOS>| Je suis  étudiant

Encoder Decoder

Deep CNN RNN with attention

» Achieve superior results



Discriminative vs. Generative Models

-
A

i " : \ g i,;ﬁ, ‘ 7
Cat (/(‘ ;:h;}?} =1
Vo . NF Lk

Discriminative models Generative models



Why study deep generative models?

* GO beyond assoclating inputs to outputs

» Understand high-dimensional, complex probability distributions

e Discover the "true” structure of the data

 Detect surprising events in the world (anomaly detection)

* Missing Data (semi-supervised learning)

» Generate models for planning (model-based reinforcement learning)



Why study Generative Adversarial Networks?

e

Q: What are some recent and
potentially upcoming
breakthroughs in deep learning?

A: The most important one, In

my opinion, IS adversarial training
(also called GAN for Generative
Adversarial Networks) ... This, and
the variations that are now being
proposed Is the most interesting
idea in the last 10 years in ML,
In My opinion.



Progress in GANSs

Cumulative number of GAN papers by year

lan Goodfellow Retweeted
Terry Taewoong Um @TerryUm_ML - Apr 6
i | developed a GANN (Generative adversarial name-making networks), for you,
80 : @hardmaru @karpathy. The source code is available in powerpoint.
% Generative Adversarial Name-making Networks
L 60
8
e
o
S
(¢}
£
’GAN’
2 40
8
(@)
= D
Generate prefix or Determine if the
20 postfix of GAN name is cool or not
Character-level input @errytm_ML
0
2014 2015 2016 2017

Year

Source: https://deephunt.in/the-gan-z00-79597dc8c347




Generative Modeling

®
Pmodel

Slide adapted from Sebastian Nowozin



Generative Modeling

Assumptions on P:
 tractable sampling

. | , ples
Slide adapted from Sebastian Nowozin



Generative Modeling

o
medel e

Assumptions on P:
 tractable sampling
» tractable likelihood function

Slide adapted from Sebastian Nowozin




Three Broad Categories

» Autoregressive Models
* Variational Autoencoders

* Generative Adversarial Networks (GANS)

10



Autoregressive Models

 Explicitly model conditional probabllities:
n

pmodel(m) — pmodel(xl) Hpmodel(xz’ | L1y... 73773—1)

1=9 \ Each con/'t/'ona/ can be
a complicated neural net

0l
e

PixelCNN elephants
(van den Ord et al. 2016) 1

Disadvantages:

* (Generation can be too costly

 Generation can not be controlled
by a latent code

Slide adapted from lan Goodfellow



Variational Autoencoder  x e izl >

* Maximizes a variational lower bound on log-likelihood of a

log p(x) >logp(x) — Dk (q(2)||p(z | x))
— 4:z~q logp(w, Z) T H(Q)

Disadvantages:

« Not asymptotically consistent unless
q IS perfect

 Tends to produce blurry samples

Face samples for
Labeled Faces in the Wild (LFW)
(Alec Radford) Slide adapted from lan Goodfellow 12




Generative
Adversarial
Networks

GAN




Genetive Adversarial Networks (GANS)
(Goodfellow et al,, 2014)

* A game-theoretic
likelihood free model

Noise
(random input)

Advantages:
e Uses a latent code

Generative
Model

* No Markov chains

. needed
z ~ Uniformy g

think of this as :BA“ ~ Sy “ 1 Produ;ces the best
a transformation Sdmples

14



Genetive Adversarial Networks (GANS)
(Goodfellow et al,, 2014)

Generator

Noise f| == — mfake
Go [ ]\

‘:‘ ,;.‘—”‘:;’: £
Training A=Ay
ARSI B

data Woe

{3317 S 73371} ~ Pdata

* A game between a generator Go(2) and a discriminator D, (x)
= Generator tries to fool discriminator (i.e. generate realistic samples)
= Discriminator tries to distinguish fake from real samples

15



Intuition behind GANs

D, Discriminator (Art Critic)

A

Loreal L fake (= y: Generator (Forger)

16



Intuition
ANy

ehind GAN Training

o'y N

: < y t [ P ,lﬂ

https://www.youtube.com/watch?v=No26JKQKZNE




Training Procedure (Goodfellow et al, 2014)

» Use SGD on two minibatches simultaneously:
» A minibatch of training examples

= A minibatch of generated samples

) N )
o0 D) )

----------------------

. . .
. ° D ‘\_

.
L )
4 A
e e, e --e-7
. ’ A} ’
\l \.l

. 7L T I
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GAN Training: Minimax Game (Goodfellow et al, 2014)

min max Bz p,,., 108 Do ()] + Eznp, [log (1 — Duy(Go(2)))]

ST r

Real data Noise vector used to

generate data Cross-entropy
1 1 loss for binary
JP) — 5 @~ paus 108 D(x) — 5E= log (1 — D (G(z))) TekEsliceiien
(G) _ _1 5 Generator maximizes the log-probability
S = ) 22 log D (G(2)) of the discriminator being mistaken

» Equilibrium of the game
« Minimizes the Jensen-Shannon divergence o



GAN Training: Minimax Game (Goodfellow et al, 2014)

min max Bz p,,., 108 Do ()] + Eznp, [log (1 — Duy(Go(2)))]

ST r

Real data Noise vector used to

ross-entropy

.o __1p | Important questionis |

— - _ assification
- . | “Does this converge??”
7@ = _“E,1
2

» Equilibrium of the game

probability

Ol the discriminator being mistaken

* Minimizes the Jensen-Shannon divergence .



Training Procedure

GAN learning gaussian

(Goodfellow et al,, 2014)

1.0
-~ P(data)l
— G(2) |
S— |
0.8 = Ok |
0.6
D
=)
&
0.4 o
’ L ARy B 0 B e, BBt Sy e iy
’ A Y
’ \
’ 5
’
C e R RS BN B, SRR, BRI, BN RO .
0.2 ’
y
r
’
’ .
’ Y
o9 4 = 0 T SR R R
x

3
B

Source: Alec Radford O DR e PR
Source: OpenAl blog

Generating 1D points Generating Images



Results
(Goodfellow et al,, 2014)

* The generator uses
a mixture of rectifier
iInear activations
and/or sigmoid
activations

e The discriminator
net used maxout
activations.

CIFAR10 samples CIFAR10 samples

(fully-connected model) (convolutional discriminator,
deconvolutional generator) .,



Laplacian GANs (LAPGAN) (Denton et al, 2015)

* |[dea: Combine GAN with a multi-scale image representation

(Laplacian pyramid)

Real/Generated?

Real/
Z, I Generated?

Real/
Generated?

Real/Generated?

23



64x64 pixels

LAPGAN fOI’ LSU N TOWG 'S ~700Kimages (Denton et al,, 2015)

-




64x64 pixels
edro (

4 T el h
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Deep Convolutional GANs (DCGAN)

[

(Radfordet al, 2015)
* |dea: Tricks to make GAN training more stable

1024
A

Stride 2

16

Stride 2

Project and reshape Deconv 1
Deconv 2 .
Deconv 3
Deconv 4 =
G(2)
* No fully connected layers * Use Adam (Kingma and Ba, 2015)
« Batch Normalization « Tweak Adam hyperparameters a bit
(loffe and Szegedy, 2015) (Ir=0.0002, b1=0.5)

 Leaky Rectifier in D

26



64x64 pixels

DCGAN for LSUN Bedrooms -amimages (Radford et al, 2015)

27



Walking
over the L
latent space T &
(Radford et al, 2015) & 1

* [nterpolation
suggests

non-overfitting
behavior




(Radford et al,, 2015)
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Vector Space Arithmetic (Radford et al, 2015)

man man woman
with glasses without glasses without glasses

woman with glasses



(Radford et al,, 2015)

smiling woman neutral neutral
woman man

smiling man



Subclasses of GANs

Vanilla GAN Discriminator Looks at Latent Variables Discriminator Predicts Latent Variables
Vanilla GAN Conditional GAN Bidirectional GAN Semi-Supervised GAN InfoGAN Auxiliary Classifier GAN
(Goodfellow, et al., 2014) (Mirza & Osindero, 2014) (Donahue, et al., 2016; Dumoulin, et al., 2016) (Odena, 2016; Salimans, et al., 2016) (Chen, et al., 2016) (Odena, et al., 2016)

real c=1
real c=2
e (=)
()

(fake) (fake) fake (fake) (C fake

(Xreal (data)J ( X fake (X,eaz (data)) ( X fake ]
G

(C (class)) ( 7 (noise)) [ C (class) ] ( Z (noise) ) (C (latent)] (Z (noise)) [c (class)) ( 7 (noise))

Image: Christopher Olah 32

!

Bl
S

(Xreal (data)) [-Xreal (data)] ( X fake

=

Lo
{§‘
i

(-Xreal (data)) ( Xsake J




Vanilla GAN (Goodfellow et al,, 2014)

(Xreat (data))  ( Xfoke )
A
\_6 /

( Z (noise) )

Discriminator

DCGAN (Radford et al,, 2015)
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Conditional GAN (Mirza and Osindero, 2014)

» Add conditional variables y into G and D

fake

(z1y)))]

Ewdiata(m) [log D(w’y)] + IEzwpz(z) [log(l - D(G

(D, G)

D

min max V
G

D

(X'real (data)) ( X fake )

L
™
™,
o~
al
3
™
. o
G
™
™
o
o

A
}

? ¥a 299
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Conditional GAN (Mirza and Osindero, 2014)

* Add conditional variables y into G and D

o
I

(Xreal (data)J ( X fake

NES

| (class)l l v (n0|se)|

m(%n max V(D,G) = Eprppu(z)log D(z|y)] + E,.p, (2)|log(l — D(G(2]y)))]

oj1,0]j]0]0|]0|O0O|O0O}|0]|O0

More on Condltlonal GANSs
In Part 3 (Levent)
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Auxiliary Classifier GAN (Odena et al, 2016)

 Every generated sample has a corresponding

=D class label
fake ) (- ) Lg = Ellog P(S = real | Xyea)] + Ellog P(S = fake | Xfake)]

;ﬁ’ﬁ Lo =FEllog P(C =c | Xrear)] + Ellog P(C = ¢ | Xrake)]

* D Is trained to maximize Ly + L

=) | X’;"e )« Gis trained to maximize Lo—Lg
G
@) (Zww) * Learns a representation for z that is independent

of class label

36



Auxiliary Classifier GAN (Odena et al, 2016)

128%128 resolution samples from 5 classes taken from an AC-GAN trained on the ImageNet

4 “ | [ 4
L

redshank grey whale

monarch butterfly goldfinch
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Bidirectional GAN (Donahue et al,, 2016; Dumoulin et al,, 2016)

* Jointly learns a generator network and an

&n

(Xreal (data))ﬂr X fake )

( 7 (latent)

=

A
\ ¢/

k{ 7 (Iatent))

inference network using an adversarial process.
min max V (D, G)

= Eq(a) log(D (2, G2 (x)))] + By [log(1 — D(Gal(2), 2))]

// q(z | «)log(D(x,

z))dxdz

// p(x | z)log(1l — D(x, z))dxdz.

PpASaRAAA
EEHAA: S 28
ﬁ@wﬂﬂﬁ'.
Aascane e
353«3 ; &}Hnﬁﬁl
Eannane

aafBBReE AEs

CelebA reconstructions

I P
ENEEEE?
EHEEB3E2
gl 2571 B N B
NEHEEE NN
REIEE < Wl
el D
il 1711 DS R

SVNH reconstructions
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T : (Donahue et al,, 2016;
Bidirectional GAN 'j| - S0y

LSUN bedrooms Tiny ImageNet

......



Applications of GANs



(Salimans et al,, 2016,

Semi-supervised Classification pumoulin et al, 2016)

SVNH
Model Misclassification rate
VAE (M1 + M2) (Kingma et al., 2014) 36.02
SWWAE with dropout (Zhao et al., 2015) 23.56
DCGAN + L2-SVM (Radford et al., 2015) 22.18
SDGM (Maalge et al., 2016) 16.61
GAN (feature matching) (Salimans et al., 2016) 8.11 +1.3
ALI (ours, L2-SVM) 19.14 £ 0.50
ALI (ours, no feature matching) 7.42 + 0.65

41



Class-specific Image Generation (Nguyen et al, 2016)

« Generates 227x227 realistic images from all Noiseless joint PPGN-h  Image classifier
ImageNet classes

« Combines adversarial training, moment matching ,
denoising autoencoders, and Langevin sampling

redshank monastery volcano 42



eo Generation (vondrick et al, 2016)

Foreground Stream
3D convolutions

/!

Encoder I,
2D convolutions 6"4"%
]
=
-
- 2, l P, =
M, 0"94’4 o )‘76/
Uy, Ry % N\
- — - —»
L/ £
2r3 s, oy s’*‘vv
64*&’ 2/61 \’/J/
7
—
Input Frame " |
iy Py,
4 «’55/ % >
*Js/leej —~—
"*a‘e,
Background Stream %
2D convolutions g,
(]

~ Foreground
Tanh

+(1—T)®9—'

@l v
- m Q@ f

Mask
Sigmoid

Replicate over Time

S
e,
Y

Generated Video
Space-Time Cuboid

Background
Tanh

Train Statio
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Generative Shape Modeling (wuetal, 2016)

= T i

= (@ T | | T -
P 1EA@) | &
512x4x4x4 L Vm——— =1 |

256x8x8x8

128x16x16x16 64x32x32x32

y4 G(z) in 3D Voxel Space
64x64x64

Chairs Sofas

e > @




Text-to-Image Synthesis (zhang et al, 2016)

The small bird has a red head with feathers that fade from red to gray from head to tail

This flower The flower A flower that
A unique yellow This floweris  This is a light 1s yellow have large has white petals
The petals of flower withno  pink and yellow colored flower and green in petals that are with some
this flower are  visible pistils in color, with  with many color, with pink with tones of yellow
white with a protruding from petals that are  different petals petals that yellow on some and green
large stigma the center are ruffled of the petals filaments

vl

r A
: s




Single Image Super-Resolution (Ledig et al, 2016)

e Combine content loss with adversarial loss







Unsupervised Domain Adaptation (Bousmalis et al, 2016)

Residual Block

Irelu
nl128s2
conv_| B,
BN [&
Irelu |89
n512s2
n1024s2
fe:sigmoid

RGDB image samples
(cond/t/oned on a synthetic /mage)

48



Image Edltlng (Karacan et al,, 2016)

"Maybe Iin our world lives a happy little tree

over there!'
— Bob Ross




How to Evaluate GANs?



Human Study

In this task, we present you computer generated pictures of outdoor scenes generated by different computer programs. Your task is to compare them and
determine which is more realistic and natural looking. See the below table for some examples.

Steps

1. Analyze both images and consider their features carefully
2. Determine which computer generated image (image A or image B) is more realistic than the other.

Which image seems more real?

. From (Karacan et al,, 2016) s



Evaluating Quality

* Hard to tell If progress is being made by looking at losses

* Inception Score (Salimans et al, 2016)

* Inception Accuracy (Odena et al, 2016)

= Report the fraction of the samples for which the Inception network assigned the
correct label

16x 16 32x32 64 x 64 128 x 128 256 x 256

=
o

o
@
t

o
I

o
[N}

sample accuracy at 32x32
o
(o)}
i : + = |
- o
v' ~,’ #
KN = 1
t
1

. . - 0.0 MEEEEE et i
64 128 256 80 02 04 06 08 1.0
image resolution sample accuracy at 128x128
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Measuring Diversity (Odena et al, 2016)

e M\S-SSIM scores [between randomly chosen pairs of images within a given class]

hot dog promontory green apple artichoke

MS-SSIM = 0.11 MS-SSIM = 0.29 MS-SSIM = 0.41 MS-SSIM = 0.90

synthesized

real

53



Searching for Overfitting

. Nearest Ne|ghbor Ana|y8|s (Odeﬂa et al 2016)

Synthesized Samples Corresponding Nearest Neighbors

In The Training Set
e Latent Space Interpolations image: (Dumoilin et al, 2016)

F 8885 IglalalalaTaTaTS
didddnddndnnnang



Limitations



Cherry-Picked Results

Slide credit: lan Goodfellow
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Problems with Counting

Slide credit: lan Goodfellow

57



Problems with Perspective

Slide credit: lan Goodfellow
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Problems with Perspective

This one
was real

Slide credit: lan Goodfellow

59



Problems with Global Structure

Slide credit: lan Goodfellow
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Mode Collapse (Metzetal, 2016)

min max V(G,D) # max min V(G, D)

* D in inner loop: convergence to correct distribution
* G in inner loop: place all mass on most likely point

Step O Step 5k Step 10k Step 15k Step 20k

Slide credit: lan Goodfellow

Step 25k
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Mode collapse causes low output diversity

this small bird has a pink
breast and crown, and black
primaries and secondaries.

the flower has petals that
are bright pinkish purple
with white stigma

this magnificent fellow is
almost all black with a red

crest, and white cheek patch.

this white and yellow flower
have thin white petals and a
round yellow stamen

(Reed et al. 2016)

Slide credit: lan Goodfellow

Key-

points A man in a orange jacket with sunglasses and a hat ski down a hill.

GAN (Reed 2016b) This work

K

swimming underwater.

..

A tennis player in a blue polo shirt is looking down at the green court.

(Reed et al,, 2017)
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Non-convergence

» Optimization algorithms often approach a saddle point or local
minimum rather than a global minimum

* Game solving algorithms may not approach an equilibrium at all

63



Frontiers
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Wasserstein GAN (Arjovsky et al, 2016)

« Objective based on Earth-Mover or Wassertein distance:

m@in mgx ﬂwdiata [Dw (w)] — 4:szz [Dw(GH(Z))]

* Provides nice gradients over real and fake samples

1.0

— Density of real
0.8 — Density of fake |
‘ — GAN Discriminator
——  WGAN Critic
0.6 |-
0.4
0.2 |

0.0
-0.2} ina WGAN Vanishing gradients
in regular GAN
_04 1 1 I | L 1 |
7 -6 -4 =2 0 2 4 6 8




Wasserstein GAN (Arjovsky et al, 2016)

« Wasserstein loss seems to correlate well with image quality.

35F T 7l 3.5 F T T T T T
s (MLP-512 — DCGAN
3.0 | 5 3.0 |
2 2
© ©
E =
- 4
; g
= c
L Q
2 2
= 10} s
0.5 " + 0.5
v A 4
0.0 | | | 1 | 0.0 | | | ! |
0 100000 200000 300000 400000 500000 600000 0 100000 200000 300000 400000 500000 600000

Generator iterations Generator iterations



WGAN with gradient penalty (Gulraani et al, 2017)

z~P,

E [D@&)]- E [D@)]+A E

A
T~Eg
g N

((IVeD(&)]l2 — 1)°]

=

"

Original critic loss

» Faster convergence and higher-
quality samples than WGAN with
welght clipping

* Train a wide variety of GAN
architectures with almost no
hyperparameter tuning, including
discrete models

Samples from a character-level GAN
language model on Google Billion Word

"

Our gradient penalty

WGAN with gradient penalty
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Boundary Equilibrium GAN (BEGAN)

e A loss derived from the Wasserstein distance

for training auto-encoder based GANs

D : R¥= s RN= ig the autoencoder function.
L(v) = |v— D(v)|" where < n € {1,2} is the target norm.

v € RN= is a sample of dimension V.

» \Wasserstein distance btw. the reconstruction

losses of real and generated data

« Convergence measure:
Magiobar = L(x) + [7L(x) — L(G(2a))

* Objective:
ﬁD — C(:E) =7 ktﬁ(G(ZD))
Lo = L(Glze))
ki+1 =kt + Ae(vL(z) — L(G(26)))

(Berthelot et al, 2017)

Embedding (h)
Fully Connected (h, 8*8*n) » Reshape (8, 8, n) ----------------2----------mmmee
B
Convolution, w=(3,3) d=(n, n) X Convolution, w=(3,3) d=(3, n) Input image (e4x6x
Convoluti =(3,3) d=(n, |
onvolution, W=(3,3) d=(n, ) Convolution, w=(3,3) d=(n, n) .
NN Upsampling (2,2) ~ ====mm=mmmmmmmmmmmm e Convolution, w=(3,3) d=(n, n) 64x6
Convolution, w=(3,3) d=(n, n) Subsampling (2,2) - T
i s Sl s Convolution, w=(3,3) d=(2n, 2n) 32x32x
NN Upsampling (2,2) ~ =---mmmsmesssssseeeesesooooooooooooooooooooooes Convolution, w=(3,3) d=(2n, 2n) 2n
Convolution, w=(3,3) d=(n, n) L R 7
Convolutiony w=(3,3) d=(n, n)
Convolution, w=(3,3) d=(3n, 3n)
NN Upsampling (2,2) = —ecmemmm e Convolution, w=(3,3) d=(3n, 3n)
Convolution, w=(3,3) d=(n, n) Subsampling (2,2) -------=--cmmmeeee Tl
Convolutiong w=(3,3) d=(n, n)
64 x 64 xn 8
Convolutiong w(3,3) d=(n,3)
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BEGANS for CelebA s (Berthelot et al, 2017)
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Mirror interpolation example




