
Levent Karacan
Computer Vision Lab, Hacettepe University

Part 3 – Image Editing 
with GANs

Michael James Smith’s rhyperealistic paintings 



Works will be presented

2

• Deep Convolutional Generative Adversarial Networks(DCGAN)

• Image Editing on Learned Manifold(iGAN)

• Conditional Generative Adversarial Networks(cGAN)

− Image Generation from Text (Text2Im)

− Stacked Generative Adversarial Networks(StackGAN)

− Location and Description Conditioned Image Generation(GAWWN)

− Image to Image Translation(pix2pix)

− Image Generation from Semantic Segments and Attributes(AL-CGAN)(Our work)

− Unpaired Image to Image Translation(CycleGAN)

• Neural Face Editing



Generative Adversarial Networks(GAN)
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• G tries to generate fake images that fool D.
• D tries to identify fake images.

ℒ"#$ %, ' = )*~,-./.(*) log' 5 + )*~,-./. * ,7~,8 7 [log(1 − '(5, %(<)))]
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Goodfellow vd. 2014(GAN); Radford vd. 2015(DCGAN)
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• Cats

Source: 
https://github.com/a
leju/cat-generator



DCGAN
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• Animes

Source: 
https://github.com/jaylei
cn/animeGAN



DCGAN
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• Album covers

Source: 
https://github.com/jaylei
cn/animeGAN



DCGAN
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• Flowers



DCGAN
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• Faces



Image Editing on Learned Manifold(iGAN)
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• An image editing method that aims to find projection E of input image F.

Zhu vd. 2016
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(a) original photo 

(b) projection on manifold

Project Edit Transfer

(d) smooth transition between the original and edited projection

(e) different degree of image manipulation

(c) Editing UI

Fig. 1. We use generative adversarial networks (GAN) [1,2] to perform image editing
on the natural image manifold. We first project an original photo (a) onto a low-
dimensional latent vector representation (b) by regenerating it using GAN. We then
modify the color and shape of the generated image (d) using various brush tools (c)
(for example, dragging the top of the shoe). Finally, we apply the same amount of
geometric and color changes to the original photo to achieve the final result (e). See
our interactive image editing demo on Youtube.

Understanding and modeling the natural image manifold has been a long-
standing open research problem. But in the last two years, there has been rapid
advancement, fueled largely by the development of the generative adversarial
networks [1]. In particular, several recent papers [1,2,3,4,5] have shown visually
impressive results sampling random images drawn from the natural image mani-
fold. However, there are two reasons preventing these advances from being useful
in practical applications at this time. First, the generated images, while good,
are still not quite photo-realistic (plus there are practical issues in making them
high resolution). Second, these generative models are setup to produce images
by sampling a latent vector-space, typically at random. So, these methods are
not able to create and/or manipulate visual content in a user-controlled fashion.

In this paper, we use the generative adversarial neural network to learn the
manifold of natural images, but we do not actually employ it for image genera-
tion. Instead, we use it as a constraint on the output of various image manipula-
tion operations, to make sure the results lie on the learned manifold at all times.
This enables us to reformulate several editing operations, specifically color and
shape manipulations, in a natural and data-driven way. The model automatically
adjusts the output keeping all edits as realistic as possible (Figure 1).

We show three applications based on our system: (1) Manipulating an exist-
ing photo based on an underlying generative model to achieve a di↵erent look
(shape and color); (2) “Generative transformation” of one image to look more
like another; (3) Generate a new image from scratch based on user’s scribbles
and warping UI.

All manipulations are performed in a straightforward manner through gradient-
based optimization, resulting in a simple and fast image editing tool. We hope



Image Editing on Learned Manifold(iGAN)
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• Find E that generates the input image x using generator network .

G % <H , % <I ≈ <H − <I I

K(E) D(F)

Zhu vd. 2016
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• Images generated from DCGAN trained on shirt image dataset.

G % <H , % <I ≈ <H − <I I

Zhu vd. 2016
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(a) random samples (b) random jittering (c) linear interpolation

Fig. 2. GAN as a manifold approximation. (a) Randomly generated examples from a
GAN, trained on the shirts dataset; (b) random jittering: each row shows a random
sample from a GAN (the first one at the left), and its variants produced by adding
Gaussian noise to z in the latent space; (c) interpolation: each row shows two randomly
generated images (first and last), and their smooth interpolations in the latent space.

discriminative adversarial network in a mini-max objective. The discriminator
tries to distinguish between the generated samples and natural image samples,
while the generator tries to fool the discriminator producing highly realistic
looking images. Unfortunately in practice, GAN does not yield a stable training
objective, so several modifications have been proposed recently, such as a multi-
scale generation [4] and a convolution-deconvolution architecture with batch nor-
malization [2]. While the above methods attempt to generate an image starting
from a random vector, they do not provide tools to change the generation pro-
cess with intuitive user controls. In this paper we try to remedy this by learning
a generative model that can be easily controlled via a few intuitive user edits.

3 Learning the Natural Image Manifold

Let us assume that all natural images lie on an ideal low-dimensional manifold
M with a distance function S(x

1

, x
2

) that measures the perceptual similarity
between two images x

1

, x
2

2 M. Directly modeling this ideal manifold M is ex-
tremely challenging, as it involves training a generative model in a highly struc-
tured and complex million dimensional space. Following the recent success of
deep generative networks in generating natural looking images, we approximate
the image manifold by learning a model using generative adversarial networks
(GAN) [1,2] from a large-scale image collection. Beside the high quality results,
GAN has a few other useful properties for our task we will discuss next.
Generative Adversarial Networks: AGANmodel consists of two neural net-
works: (1) a generative network G(z; ✓g) that generates an image x 2 RH⇥W⇥C

given a random vector z 2 Z, where Z denotes a d-dimensional latent space,
and (2) a discriminative network D(x; ✓d) that predicts a probability of a photo
being real (D = 1) or generated (D = 0). For simplicity, we denote G(z; ✓G)
and D(x; ✓D) as G(z) and D(x) in later sections. One common choice of Z is
a multivariate uniform distribution Unif [�1, 1]d. D and G are learned using
a min-max objective [1]. GAN works well when trained on images of a certain
class. We formally define M̃ = {G(z)|z 2 Z} and use it as an approximation to
the ideal manifold M (i.e M̃ ⇡ M). We also approximate the distance function
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G % <H , % <I ≈ <H − <I I

• Projection via optimization. L-BFGS-B method.

• Projection via feedforward network.

• Hybrid method.

ℒ 5H, 5I = L 5H − L 5I I

<∗ = MNOmin
7∈ℤR

ℒ(%(<), 5S)

TU∗ = MNOmin
VW

Xℒ(%(Y 5ZS; TU , 5ZS))
�

Z

Zhu vd. 2016
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Reconstruction 
via Optimization

Reconstruction 
via Network

Reconstruction 
via Hybrid Method

Original photos

0.3390.190 0.382 0.302 0.2510.198 0.482 0.270 0.248 0.263

0.2490.164 0.370 0.279 0.3500.165 0.437 0.255 0.178 0.227

0.2040.141 0.298 0.218 0.1600.133 0.318 0.185 0.183 0.190

Fig. 3. Projecting real photos onto the image manifold using GAN. Top row: origi-
nal photos (from handbag dataset); 2nd row: reconstruction using optimization-based
method; 3rd row: reconstruction via learned deep encoder P ; bottom row: reconstruc-
tion using the hybrid method (ours). We show the reconstruction loss below each image.

4.2 Manipulating the Latent Vector

With the image xR
0

projected onto the manifold M̃ as x
0

= G(z
0

) via the projec-
tion methods just described, we can start modifying the image on that manifold.
We update the initial projection x

0

by simultaneously matching the user inten-
tions while staying on the manifold, close to the original image x

0

.
Each editing operation is formulated as a constraint fg(x) = vg on a local

part of the output image x. The editing operations g include color, shape and
warping constraints, and are further described in Section 5.1. Given an initial
projection x

0

, we find a new image x 2 M close to x
0

trying to satisfy as many
constraints as possible

x⇤ = argmin
x2M

n

X

g

kfg(x)� vgk2

| {z }

data term

+�s · S(x, x0

)
| {z }

manifold

smoothness

o

, (4)

where the data term measures deviation from the constraint and the smoothness
term enforces moving in small steps on the manifold, so that the image content
is not altered too much. We set �s = 5 in our experiments.

The above equation simplifies to the following on the approximate GAN
manifold M̃:

z⇤ = argmin
z2Z

n

X

g

kfg(G(z))� vgk2

| {z }

data term

+�s · kz � z
0

k2
| {z }

manifold

smoothness

+ED

o

. (5)

Here the last term ED = �D · log(1 � D(G(z))) optionally captures the visual
realism of the generated output as judged by the GAN discriminator D. This
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G % <H , % <I ≈ <H − <I I g: Color, shape and warping
constraints for image editing.

<∗ = min
7∈ℤ

{X _̂ %(<) − _̀
I
+ ab. < − <d I

�

_
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(b) Updated images according to user edits

(c) Linear interpolation between  and ଵ

(a) User constraints  at different update steps

 ଵ

Fig. 4. Updating latent vector given user edits. (a) Evolving user constraint vg (black
color strokes) at each update step; (b) intermediate results at each update step (G(z0)
at leftmost, and G(z1) at rightmost); (c) a smooth linear interpolation in latent space
between G(z0) and G(z1).

further pushes the image towards the manifold of natural images, and slightly
improves the visual quality of the result. By default, we turn o↵ this term to
increase frame rates.
Gradient descent update: For most constraints Equation 5 is non-convex.
We solve it using gradient descent, which allows us to provide the user with a
real-time feedback as she manipulates the image. As a result, the objective 5
evolves in real-time as well. For computational reasons, we only perform a few
gradient descent updates after changing the constraints vg. Each update step
takes 50 � 100 ms, which ensures an interactive feedback. Figure 4 shows one
example of the update of z. Given an initial red shoe as shown in Figure 4, the
user gradually scribbles a black color stroke (i.e. specifies a region is black) on the
shoe image (Figure 4 a). Then our update method smoothly changes the image
appearance (Figure 4 b) by adding more and more of the user constraints. Once
the final result G(z

1

) is computed, a user can see the interpolation sequence
between the initial point z

0

and z
1

(Figure 4 c), and select any intermediate
result as the new starting point. Please see supplemental video for more details.

While this editing framework allows us to modify any generated image on the
approximate natural image manifold M̃, it does not directly provide us a way to
modify the original high resolution image xR

0

. In the next section we show how
edits on the approximate manifold can be transferred to the original image.

4.3 Edit Transfer

Give the original photo xR
0

(e.g. a black shoe) and its projection on the manifold
G(z

0

), and a user modification G(z
1

) by our method (e.g. the generated red
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Edit Transfer
• A dense correspondence algorithm to estimate both the geometric and color changes

induced by the editing process. 
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Fig. 5. Edit transfer via Motion+Color Flow. Following user edits on the left shoe
G(z0) we obtain an interpolation sequence in the generated latent space G(z) (top
right). We then compute the motion and color flows (right middle and bottom) between
neighboring images in G(z). These flows are concatenated and, as a validation, can be
applied on G(z0) to obtain a close reconstruction of G(z) (left middle). The bottom left
row shows how the edit is transferred to the original shoe using the same concatenated
flow, to obtain a sequence of edited shoes.

shoe). The generated image G(z
1

) captures the roughly change we want, albeit
the quality is degraded w.r.t the original image.

Can we instead adjust the original photo and produce a more photo-realistic
result xR

1

that exhibits the changes in the generated image? A straightforward
way is to transfer directly the pixel changes (i.e. xR

1

= xR
0

+(G(z
1

)�G(z
0

)). We
have tried this approach and it introduces new artifacts due to the misalignment
of the two images. To address this issue, we develop a dense correspondence
algorithm to estimate both the geometric and color changes induced by the
editing process.

Specifically, given two generated images G(z
0

) and G(z
1

), we can generate

any number of intermediate frames
⇥

G((1� t
N )·z

0

+ t
N ·z

1

)
⇤N

t=0

, where consecutive
frames only exhibit minor visual variations.
Motion+Color flow algorithm: We then estimate the color and geomet-
ric changes by generalizing the brightness constancy assumption in traditional
optical flow methods [31,32]. This results in the following motion+color flow
objective:

ZZ

kI(x, y, t)�A·I(x+u, y+v, t+1)k2
| {z }

data term

+�s(kruk2+krvk2)
| {z }

spatial reg

+�ckrAk2
| {z }

color reg

dxdy, (6)

where I(x, y, t) denotes the RGB values (r, g, b, 1)T of pixel (x, y) in the generated
image G((1 � t

N ) · z
0

+ t
N · z

1

). (u, v) is the flow vector with respect to the
change of t, and A denotes a 3⇥ 4 color a�ne transformation matrix. The data
term relaxes the color constancy assumption by introducing a locally a�ne color
transfer model A [33] while the spatial and color regularization terms encourage
smoothness in both the motion and color change. We solve the objective by
iteratively estimating the flow (u, v) using a traditional optical flow algorithm,
and computing the color change A by solving a system of linear equations [33].
We iterate 3 times. We produce 8 intermediate frames (i.e. N = 7).

For simplicity, we omit the pixel subscript (x, y) for all the variables.
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Fig. 6. Image manipulation examples: for each example, we show the original photo
and user edits on the left. The top row on the right shows the generated sequence and
the bottom row shows the edit transfer sequence on the original image.

7.2 Generative Image Transformation

An interesting outcome of the editing process is the sequence of intermediate
generated images that can be seen as a new kind of image morphing [12,42,13].
We call it “generative transformation”. We use this sequence to transform the
shape and color of one image to look like another image automatically, i.e.,
without any user edits. This is done by applying the motion+color flow on either
of the sources. Figure 7 shows a few “generative transform” examples.

7.3 Interactive Image Generation

Another byproduct of our method is that if there is no image to begin with and
all we have are the user brush strokes, the method would generate a natural
image that best satisfies the user constraints. This could be useful for dataset
exploration and browsing. The di↵erence with previous sketch-to-image retrieval
methods [43] or AverageExplorer [44], is that due to potentially contradicting
user constraints, the result may look very di↵erent than any single image from the
dataset or an average of such images, and more of a realistic hybrid image [45].
See some examples in Figure 8.

7.4 Evaluation

Image reconstruction evaluation: We evaluate three image reconstruction
methods described in Section 4.1: optimization-based, network-based and our
hybrid approach that combines the last two. We run these on 500 test images
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• Concatenate condition information F to noise vector E and introduce to discriminator.

%∗ = min
"
max
D

ℒe"#$ %, '

ℒe"#$ %, '
= )*,f~,-./.(*,f) log' 5, g + )*~,-./. * ,7~,8 7 [log(1 − '(5, %(5, <)))]

Mirza vd. 2014
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• Discriminator network tries to classify real image and wrong text as well as 
real/fake image with right text.
• Condition: Text description embedding.
• CUB bird dataset(11788 images from 200 categories), Oxford-102 flower

dataset(8189 images from 102 categories).Generative Adversarial Text to Image Synthesis

Figure 2. Our text-conditional convolutional GAN architecture. Text encoding '(t) is used by both generator and discriminator. It is
projected to a lower-dimensions and depth concatenated with image feature maps for further stages of convolutional processing.

description embedding, D is the dimension of the image,
and Z is the dimension of the noise input to G. We illustrate
our network architecture in Figure 2.

In the generator G, first we sample from the noise prior
z 2 RZ ⇠ N (0, 1) and we encode the text query t us-
ing text encoder '. The description embedding '(t) is
first compressed using a fully-connected layer to a small
dimension (in practice we used 128) followed by leaky-
ReLU (Maas et al., 2013) and then concatenated to the
noise vector z. Following this, inference proceeds as in
a normal deconvolutional network: we feed-forward it
through the generator G; a synthetic image x̂ is generated
via x̂ G(z,'(t)). As a summary, image generation cor-
responds to feed-forward inference in the generator G con-
ditioned on query text and a noise sample.

In the discriminator D, we perform several layers of stride-
2 convolution with spatial batch normalization (Ioffe &
Szegedy, 2015) followed by leaky ReLU. We again reduce
the dimensionality of the description embedding '(t) in a
(separate) fully-connected layer followed by rectification.
When the spatial dimension of the discriminator is 4 ⇥ 4,
we replicate the description embedding spatially and per-
form a depth concatenation. We then perform a 1⇥ 1 con-
volution followed by rectification and a 4 ⇥ 4 convolution
to compute the final score from D. Batch normalization is
performed on all convolutional layers.

4.2. Matching-aware discriminator (GAN-CLS)

The most straightforward way to train a conditional GAN
is to view (text, image) pairs as joint observations and train
the discriminator to judge pairs as real or fake. This type of
conditioning is naive in the sense that the discriminator has
no explicit notion of whether real training images match
the text embedding context. However, as discussed also
by (Gauthier, 2015), the dynamics of learning may be dif-
ferent from the non-conditional case. In the beginning of
training, the discriminator ignores the conditioning infor-
mation and easily rejects samples from G because they do
not look plausible. Once G has learned to generate plausi-

Algorithm 1 GAN-CLS training algorithm with step size
↵, using minibatch SGD for simplicity.

1: Input: minibatch images x, matching text t, mis-
matching ˆ

t, number of training batch steps S
2: for n = 1 to S do
3: h '(t) {Encode matching text description}
4: ˆ

h '(

ˆ

t) {Encode mis-matching text description}
5: z ⇠ N (0, 1)

Z {Draw sample of random noise}
6: x̂ G(z, h) {Forward through generator}
7: s

r

 D(x, h) {real image, right text}
8: s

w

 D(x,

ˆ

h) {real image, wrong text}
9: s

f

 D(x̂, h) {fake image, right text}
10: L

D

 log(s

r

) + (log(1� s

w

) + log(1� s

f

))/2

11: D  D � ↵@L
D

/@D {Update discriminator}
12: L

G

 log(s

f

)

13: G G� ↵@L
G

/@G {Update generator}
14: end for

ble images, it must also learn to align them with the condi-
tioning information, and likewise D must learn to evaluate
whether samples from G meet this conditioning constraint.

In naive GAN, the discriminator observes two kinds of in-
puts: real images with matching text, and synthetic images
with arbitrary text. Therefore, it must implicitly separate
two sources of error: unrealistic images (for any text), and
realistic images of the wrong class that mismatch the con-
ditioning information. Based on the intuition that this may
complicate learning dynamics, we modified the GAN train-
ing algorithm to separate these error sources. In addition
to the real / fake inputs to the discriminator during train-
ing, we add a third type of input consisting of real im-
ages with mismatched text, which the discriminator must
learn to score as fake. By learning to optimize image / text
matching in addition to the image realism, the discrimina-
tor can provide an additional signal to the generator.

Algorithm 1 summarizes the training procedure. After en-
coding the text, image and noise (lines 3-5) we generate
the fake image (x̂, line 4). s

r

indicates the score of associ-

Reed vd. 2016
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Figure 5. ROC curves using cosine distance between predicted
style vector on same vs. different style image pairs. Left: im-
age pairs reflect same or different pose. Right: image pairs reflect
same or different average background color.

The text embedding mainly covers content information and
typically nothing about style, e.g. captions do not mention
the background or the bird pose. Therefore, in order to
generate realistic images then GAN must learn to use noise
sample z to account for style variations.

To quantify the degree of disentangling on CUB we set up
two prediction tasks with noise z as the input: pose verifi-
cation and background color verification. For each task, we
first constructed similar and dissimilar pairs of images and
then computed the predicted style vectors by feeding the
image into a style encoder (trained to invert the input and
output of generator). If GAN has disentangled style using
z from image content, the similarity between images of the
same style (e.g. similar pose) should be higher than that of
different styles (e.g. different pose).

To recover z, we inverted the each generator network as
described in subsection 4.4. To construct pairs for verifica-
tion, we grouped images into 100 clusters using K-means
where images from the same cluster share the same style.
For background color, we clustered images by the average
color (RGB channels) of the background; for bird pose, we
clustered images by 6 keypoint coordinates (beak, belly,
breast, crown, forehead, and tail).

For evaluation, we compute the actual predicted style vari-
ables by feeding pairs of images style encoders for GAN,
GAN-CLS, GAN-INT and GAN-INT-CLS. We verify the
score using cosine similarity and report the AU-ROC (aver-
aging over 5 folds). As a baseline, we also compute cosine
similarity between text features from our text encoder.

We present results on Figure 5. As expected, captions alone
are not informative for style prediction. Moreover, con-
sistent with the qualitative results, we found that models
incorporating interpolation regularizer (GAN-INT, GAN-
INT-CLS) perform the best for this task.

5.3. Pose and background style transfer

We demonstrate that GAN-INT-CLS with trained style en-
coder (subsection 4.4) can perform style transfer from an

The bird has a yellow breast with grey 
features and a small beak.

This is a large white bird with black 
wings and a red head.

A small bird with a black head and 
wings and features grey wings.

This bird has a white breast, brown 
and white coloring on its head and 
wings, and a thin pointy beak.

A small bird with white base and black 
stripes throughout its belly, head, and 
feathers.

A small sized bird that has a cream belly 
and a short pointed bill.

This bird is completely red.

This bird is completely white.

This is a yellow bird. The wings are 
bright blue.

Text descriptions
(content)

Images 
(style)

Figure 6. Transfering style from the top row (real) images to the
content from the query text, with G acting as a deterministic de-
coder. The bottom three rows are captions made up by us.

Figure 8. Left: Generated bird images by interpolating between
two sentences (within a row the noise is fixed). Right: Interpolat-
ing between two randomly-sampled noise vectors.

unseen query image onto a text description. Figure 6 shows
that images generated using the inferred styles can accu-
rately capture the pose information. In several cases the
style transfer preserves detailed background information
such as a tree branch upon which the bird is perched.

Disentangling the style by GAN-INT-CLS is interesting be-
cause it suggests a simple way of generalization. This way
we can combine previously seen content (e.g. text) and pre-
viously seen styles, but in novel pairings so as to generate
plausible images very different from any seen image during
training. Another way to generalize is to use attributes that
were previously seen (e.g. blue wings, yellow belly) as in
the generated parakeet-like bird in the bottom row of Fig-
ure 6. This way of generalization takes advantage of text
representations capturing multiple visual aspects.

5.4. Sentence interpolation

We now show that our GAN-INT model can smoothly sam-
ple from linear interpolations of points on the text mani-
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Abstract
Automatic synthesis of realistic images from text
would be interesting and useful, but current AI
systems are still far from this goal. However, in
recent years generic and powerful recurrent neu-
ral network architectures have been developed
to learn discriminative text feature representa-
tions. Meanwhile, deep convolutional generative
adversarial networks (GANs) have begun to gen-
erate highly compelling images of specific cate-
gories such as faces, album covers, room interi-
ors etc. In this work, we develop a novel deep
architecture and GAN formulation to effectively
bridge these advances in text and image model-
ing, translating visual concepts from characters
to pixels. We demonstrate the capability of our
model to generate plausible images of birds and
flowers from detailed text descriptions.

1. Introduction
In this work we are interested in translating text in the form
of single-sentence human-written descriptions directly into
image pixels. For example, “this small bird has a short,
pointy orange beak and white belly” or ”the petals of this
flower are pink and the anther are yellow”.

A large body of work in computer vision studies attribute
representations - distinguishing characteristics of visual ob-
ject categories encoded into a vector (Lampert et al., 2013),
in particular to enable zero-shot visual recognition (Fu
et al., 2014; Akata et al., 2015), and recently for conditional
image generation (Yan et al., 2015).

While the discriminative power and strong generalization
properties of attribute representations are attractive, at-
tributes are also cumbersome to obtain as they may require
domain-specific knowledge. In comparison, natural lan-

Proceedings of the 33 rd
International Conference on Machine

Learning, New York, NY, USA, 2016. JMLR: W&CP volume
48. Copyright 2016 by the author(s).

this small bird has a pink 
breast and crown, and black 
primaries and secondaries.

the flower has petals that 
are bright pinkish purple 
with white stigma

this magnificent fellow is 
almost all black with a red 
crest, and white cheek patch.

this white and yellow flower 
have thin white petals and a 
round yellow stamen

Figure 1. Examples of generated images from text descriptions.
Left: captions are from zero-shot (held out) categories. Right:
captions are from training set categories.

guage offers a general and flexible interface for describing
objects in any space of visual categories. Ideally, we could
have the generality of text descriptions with the discrimi-
native power of attributes.

Recently, deep convolutional and recurrent networks for
text have yielded highly discriminative and generaliz-
able (in the zero-shot learning sense) text representations
learned automatically from words and characters (Reed
et al., 2016). These approaches exceed the previous state-
of-the-art using attributes for zero-shot visual recognition
on the Caltech-UCSD birds database (Wah et al., 2011),
and also are capable of zero-shot caption-based retrieval.
Motivated by these works, we aim to learn a mapping di-
rectly from words and characters to image pixels.

To solve this challenging problem requires solving two sub-
problems: first, learn a text feature representation that cap-
tures the important visual details; and second, use these fea-
tures to synthesize a compelling image that a human might
mistake for real. Fortunately, deep learning has enabled
enormous progress in both subproblems - natural language
representation and image synthesis - in the previous several
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“Blue bird with black beak “This bird is completely red with black wings”
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Figure 5. ROC curves using cosine distance between predicted
style vector on same vs. different style image pairs. Left: im-
age pairs reflect same or different pose. Right: image pairs reflect
same or different average background color.

The text embedding mainly covers content information and
typically nothing about style, e.g. captions do not mention
the background or the bird pose. Therefore, in order to
generate realistic images then GAN must learn to use noise
sample z to account for style variations.

To quantify the degree of disentangling on CUB we set up
two prediction tasks with noise z as the input: pose verifi-
cation and background color verification. For each task, we
first constructed similar and dissimilar pairs of images and
then computed the predicted style vectors by feeding the
image into a style encoder (trained to invert the input and
output of generator). If GAN has disentangled style using
z from image content, the similarity between images of the
same style (e.g. similar pose) should be higher than that of
different styles (e.g. different pose).

To recover z, we inverted the each generator network as
described in subsection 4.4. To construct pairs for verifica-
tion, we grouped images into 100 clusters using K-means
where images from the same cluster share the same style.
For background color, we clustered images by the average
color (RGB channels) of the background; for bird pose, we
clustered images by 6 keypoint coordinates (beak, belly,
breast, crown, forehead, and tail).

For evaluation, we compute the actual predicted style vari-
ables by feeding pairs of images style encoders for GAN,
GAN-CLS, GAN-INT and GAN-INT-CLS. We verify the
score using cosine similarity and report the AU-ROC (aver-
aging over 5 folds). As a baseline, we also compute cosine
similarity between text features from our text encoder.

We present results on Figure 5. As expected, captions alone
are not informative for style prediction. Moreover, con-
sistent with the qualitative results, we found that models
incorporating interpolation regularizer (GAN-INT, GAN-
INT-CLS) perform the best for this task.

5.3. Pose and background style transfer

We demonstrate that GAN-INT-CLS with trained style en-
coder (subsection 4.4) can perform style transfer from an

Figure 6. Transfering style from the top row (real) images to the
content from the query text, with G acting as a deterministic de-
coder. The bottom three rows are captions made up by us.

‘Red bird with black beak’

‘Small blue bird with black wings’ → 

Figure 8. Left: Generated bird images by interpolating between
two sentences (within a row the noise is fixed). Right: Interpolat-
ing between two randomly-sampled noise vectors.

unseen query image onto a text description. Figure 6 shows
that images generated using the inferred styles can accu-
rately capture the pose information. In several cases the
style transfer preserves detailed background information
such as a tree branch upon which the bird is perched.

Disentangling the style by GAN-INT-CLS is interesting be-
cause it suggests a simple way of generalization. This way
we can combine previously seen content (e.g. text) and pre-
viously seen styles, but in novel pairings so as to generate
plausible images very different from any seen image during
training. Another way to generalize is to use attributes that
were previously seen (e.g. blue wings, yellow belly) as in
the generated parakeet-like bird in the bottom row of Fig-
ure 6. This way of generalization takes advantage of text
representations capturing multiple visual aspects.

5.4. Sentence interpolation

We now show that our GAN-INT model can smoothly sam-
ple from linear interpolations of points on the text mani-

Reed vd. 2016
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Figure 5. ROC curves using cosine distance between predicted
style vector on same vs. different style image pairs. Left: im-
age pairs reflect same or different pose. Right: image pairs reflect
same or different average background color.

The text embedding mainly covers content information and
typically nothing about style, e.g. captions do not mention
the background or the bird pose. Therefore, in order to
generate realistic images then GAN must learn to use noise
sample z to account for style variations.

To quantify the degree of disentangling on CUB we set up
two prediction tasks with noise z as the input: pose verifi-
cation and background color verification. For each task, we
first constructed similar and dissimilar pairs of images and
then computed the predicted style vectors by feeding the
image into a style encoder (trained to invert the input and
output of generator). If GAN has disentangled style using
z from image content, the similarity between images of the
same style (e.g. similar pose) should be higher than that of
different styles (e.g. different pose).

To recover z, we inverted the each generator network as
described in subsection 4.4. To construct pairs for verifica-
tion, we grouped images into 100 clusters using K-means
where images from the same cluster share the same style.
For background color, we clustered images by the average
color (RGB channels) of the background; for bird pose, we
clustered images by 6 keypoint coordinates (beak, belly,
breast, crown, forehead, and tail).

For evaluation, we compute the actual predicted style vari-
ables by feeding pairs of images style encoders for GAN,
GAN-CLS, GAN-INT and GAN-INT-CLS. We verify the
score using cosine similarity and report the AU-ROC (aver-
aging over 5 folds). As a baseline, we also compute cosine
similarity between text features from our text encoder.

We present results on Figure 5. As expected, captions alone
are not informative for style prediction. Moreover, con-
sistent with the qualitative results, we found that models
incorporating interpolation regularizer (GAN-INT, GAN-
INT-CLS) perform the best for this task.

5.3. Pose and background style transfer

We demonstrate that GAN-INT-CLS with trained style en-
coder (subsection 4.4) can perform style transfer from an

Figure 6. Transfering style from the top row (real) images to the
content from the query text, with G acting as a deterministic de-
coder. The bottom three rows are captions made up by us.

‘This bird is bright.’ → ‘This bird is dark.’ ‘This is a yellow bird. The wings are bright blue’

Figure 8. Left: Generated bird images by interpolating between
two sentences (within a row the noise is fixed). Right: Interpolat-
ing between two randomly-sampled noise vectors.

unseen query image onto a text description. Figure 6 shows
that images generated using the inferred styles can accu-
rately capture the pose information. In several cases the
style transfer preserves detailed background information
such as a tree branch upon which the bird is perched.

Disentangling the style by GAN-INT-CLS is interesting be-
cause it suggests a simple way of generalization. This way
we can combine previously seen content (e.g. text) and pre-
viously seen styles, but in novel pairings so as to generate
plausible images very different from any seen image during
training. Another way to generalize is to use attributes that
were previously seen (e.g. blue wings, yellow belly) as in
the generated parakeet-like bird in the bottom row of Fig-
ure 6. This way of generalization takes advantage of text
representations capturing multiple visual aspects.

5.4. Sentence interpolation

We now show that our GAN-INT model can smoothly sam-
ple from linear interpolations of points on the text mani-

Reed vd. 2016
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Figure 5. ROC curves using cosine distance between predicted
style vector on same vs. different style image pairs. Left: im-
age pairs reflect same or different pose. Right: image pairs reflect
same or different average background color.

The text embedding mainly covers content information and
typically nothing about style, e.g. captions do not mention
the background or the bird pose. Therefore, in order to
generate realistic images then GAN must learn to use noise
sample z to account for style variations.

To quantify the degree of disentangling on CUB we set up
two prediction tasks with noise z as the input: pose verifi-
cation and background color verification. For each task, we
first constructed similar and dissimilar pairs of images and
then computed the predicted style vectors by feeding the
image into a style encoder (trained to invert the input and
output of generator). If GAN has disentangled style using
z from image content, the similarity between images of the
same style (e.g. similar pose) should be higher than that of
different styles (e.g. different pose).

To recover z, we inverted the each generator network as
described in subsection 4.4. To construct pairs for verifica-
tion, we grouped images into 100 clusters using K-means
where images from the same cluster share the same style.
For background color, we clustered images by the average
color (RGB channels) of the background; for bird pose, we
clustered images by 6 keypoint coordinates (beak, belly,
breast, crown, forehead, and tail).

For evaluation, we compute the actual predicted style vari-
ables by feeding pairs of images style encoders for GAN,
GAN-CLS, GAN-INT and GAN-INT-CLS. We verify the
score using cosine similarity and report the AU-ROC (aver-
aging over 5 folds). As a baseline, we also compute cosine
similarity between text features from our text encoder.

We present results on Figure 5. As expected, captions alone
are not informative for style prediction. Moreover, con-
sistent with the qualitative results, we found that models
incorporating interpolation regularizer (GAN-INT, GAN-
INT-CLS) perform the best for this task.

5.3. Pose and background style transfer

We demonstrate that GAN-INT-CLS with trained style en-
coder (subsection 4.4) can perform style transfer from an

Figure 6. Transfering style from the top row (real) images to the
content from the query text, with G acting as a deterministic de-
coder. The bottom three rows are captions made up by us.

Figure 8. Left: Generated bird images by interpolating between
two sentences (within a row the noise is fixed). Right: Interpolat-
ing between two randomly-sampled noise vectors.

unseen query image onto a text description. Figure 6 shows
that images generated using the inferred styles can accu-
rately capture the pose information. In several cases the
style transfer preserves detailed background information
such as a tree branch upon which the bird is perched.

Disentangling the style by GAN-INT-CLS is interesting be-
cause it suggests a simple way of generalization. This way
we can combine previously seen content (e.g. text) and pre-
viously seen styles, but in novel pairings so as to generate
plausible images very different from any seen image during
training. Another way to generalize is to use attributes that
were previously seen (e.g. blue wings, yellow belly) as in
the generated parakeet-like bird in the bottom row of Fig-
ure 6. This way of generalization takes advantage of text
representations capturing multiple visual aspects.

5.4. Sentence interpolation

We now show that our GAN-INT model can smoothly sam-
ple from linear interpolations of points on the text mani-
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• There are 2 stages.

• Stage-I GAN: Generates low
resolution images.
• Conditioning Augmentation
• Regularization term is added

to generator.
'hi(j(k(lm) ∥ j(0, p))

• Stage-II GAN: Generates high
resolution detailed images.
• Noise vector is not used.
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scales, poses and configurations. This fact can be exploited by separating the questions of “what”
and “where” to modify the image at each step of computation. In addition to parameter efficiency,
this yields the benefit of more interpretable image samples, in the sense that we can track what the
network was meant to depict at each location.

Beak

Belly

This bird is bright blue.
Right leg

This bird is completely black.

Head

a man in an orange jacket, black pants and a black cap wearing sunglasses skiing

Figure 1: Text-to-image examples. Locations can
be specified by keypoint or bounding box.

For many image datasets, we have not only
global annotations such as a class label but
also localized annotations, such as bird part
keypoints in Caltech-USCD birds (CUB) [Wah
et al., 2011] and human joint locations in the
MPII Human Pose dataset (MHP) [Andriluka
et al., 2014]. For CUB, there are associated
text captions, and for MHP we collected a new
dataset of 3 captions per image.

Our proposed model learns to perform location-
and content-controllable image synthesis on the
above datasets. We demonstrate two ways to
encode spatial constraints (though there could
be many more). First, we show how to condi-
tion on the coarse location of a bird by incor-
porating spatial masking and cropping modules
into a text-conditional GAN, implemented using spatial transformers. Second, we can condition
on part locations of birds and humans in the form of a set of normalized (x,y) coordinates, e.g.
beak@(0.23,0.15). In the second case, the generator and discriminator use a multiplicative gating
mechanism to attend to the relevant part locations.

The main contributions are as follows: (1) a novel architecture for text- and location-controllable
image synthesis, yielding more realistic and higher-resolution CUB samples, (2) a text-conditional
object part completion model enabling a streamlined user interface for specifying part locations, and
(3) exploratory results and a new dataset for pose-conditional text to human image synthesis.

2 Related Work

In addition to recognizing patterns within images, deep convolutional networks have shown remark-
able capability to generate images. Dosovitskiy et al. [2015] trained a deconvolutional network to
generate 3D chair renderings conditioned on a set of graphics codes indicating shape, position and
lighting. Yang et al. [2015] followed with a recurrent convolutional encoder-decoder that learned
to apply incremental 3D rotations to generate sequences of rotated chair and face images. Oh et al.
[2015] used a similar approach in order to predict action-conditional future frames of Atari games.
Reed et al. [2015] trained a network to generate images that solved visual analogy problems.

The above models were all deterministic (i.e. conventional feed-forward and recurrent neural
networks), trained to learn one-to-one mappings from the latent space to pixel space. Other recent
works take the approach of learning probabilistic models with variational autoencoders [Kingma and
Welling, 2014, Rezende et al., 2014]. Kulkarni et al. [2015] developed a convolutional variational
autoencoder in which the latent space was “disentangled” into separate blocks of units corresponding
to graphics codes. Gregor et al. [2015] created a recurrent variational autoencoder with attention
mechanisms for reading and writing portions of the image canvas at each time step (DRAW).

In addition to VAE-based image generation models, simple and effective Generative Adversarial
Networks [Goodfellow et al., 2014] have been increasingly popular. In general, GAN image samples
are notable for their relative sharpness compared to samples from the contemporary VAE models.
Later, class-conditional GAN [Denton et al., 2015] incorporated a Laplacian pyramid of residual
images into the generator network to achieve a significant qualitative improvement. Radford et al.
[2016] proposed ways to stabilize deep convolutional GAN training and synthesize compelling
images of faces and room interiors.

Spatial Transformer Networks (STN) [Jaderberg et al., 2015] have proven to be an effective visual
attention mechanism, and have already been incorporated into the latest deep generative models.
Eslami et al. [2016] incorporate STNs into a form of recurrent VAE called Attend, Infer, Repeat (AIR),
that uses an image-dependent number of inference steps, learning to generate simple multi-object

2
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Figure 5: Bird generation conditioned on fixed groundtruth keypoints (overlaid in blue) and previously
unseen text. Each sample uses a different random noise vector.

Shrinking Translation Stretching

This bird has 
a black head, 
a long orange 
beak and 
yellow body

This large 
black bird has 
a pointy beak 
and black eyes

This small blue 
bird has a 
short pointy 
beak and 
brown patches 
on its wings

Caption GT

Figure 6: Controlling the bird’s position using keypoint coordinates. Here we only interpolated the
beak and tail positions, and sampled the rest conditioned on these two.

Unlike in the case of bounding boxes, we can now control which way the bird is pointing; note that
here all birds face left, whereas when we use bounding boxes (Figure 4) the orientation is random.
Elements of the scene, even outside of the controllable location, adjust in order to be coherent with
the bird’s position in each frame although in each set of three frames we use the same noise vector z.

5.3 Generating both bird keypoints and images from text alone
Although ground truth keypoint locations lead to visually plausible results as shown in the previous
sections, the keypoints are costly to obtain. In Figure 7, we provide examples of accurate samples
using generated keypoints. Compared to ground-truth keypoints, on average we did not observe
degradation in quality. More examples for each regime are provided in the supplement.

Figure 7: Keypoint- and text-conditional bird generation in which the keypoints are generated
conditioned on unseen text. The small blue boxes indicate the generated keypoint locations.

5.4 Comparison to previous work

In this section we compare our results with previous text-to-image results on CUB. In Figure 8 we
show several representative examples that we cropped from the supplementary material of [Reed et al.,
2016b]. We compare against the actual ground-truth and several variants of GAWWN. We observe
that the 64⇥ 64 samples from [Reed et al., 2016b] mostly reflect the text description, but in some
cases lack clearly defined parts such as a beak. When the keypoints are zeroed during training, our
GAWWN architecture actually fails to generate any plausible images. This suggests that providing
additional conditioning variables in the form of location constraints is helpful for learning to generate
high-resolution images. Overall, the sharpest and most accurate results can be seen in the 128⇥ 128

samples from our GAWWN with real or synthetic keypoints (bottom two rows).

5.5 Beyond birds: generating images of humans

In this section we apply our model to generating images of humans conditioned on a description of
their appearance and activity, and also on their approximate pose. This is a much more challenging

7
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keypoints for each of the 16 joints. During training we filtered out images with multiple people, and
for the remaining 19K images we cropped the image to the person’s bounding box.

We encoded the captions using a pre-trained char-CNN-GRU as described in [Reed et al., 2016a].
During training, the 1024-dimensional text embedding for a given image was taken to be the average
of four randomly-sampled caption encodings corresponding to that image. Sampling multiple captions
per image provides further information required to draw the object. At test time one can average
together any number of description embeddings, including a single caption.

For both CUB and MHP, we trained our GAWWN using the ADAM solver with batch size 16 and
learning rate 0.0002 (See Alg. 1 in [Reed et al., 2016b] for the conditional GAN training algorithm).
The models were trained on all categories and we show samples on a set of held out captions. For the
spatial transformer module, we used a Torch implementation provided by Oquab [2016]. Our GAN
implementation is loosely based on dcgan.torch

4.

In experiments we analyze how accurately the GAWWN samples reflect the text and location
constraints. First we control the location of the bird by interpolation via bounding boxes and
keypoints. We consider both the case of (1) ground-truth keypoints from the data set, and (2) synthetic
keypoints generated by our model, conditioned on the text. Case (2) is advantageous because it
requires less effort from a hypothetical user (i.e. entering 15 keypoint locations). We then compare
our CUB results to representative samples from the previous work. Finally, we show samples on text-
and pose-conditional generation of images of human actions.

5.1 Controlling bird location via bounding boxes
We first demonstrate sampling from the text-conditional model while varying the bird location. Since
location is specified via bounding box coordinates, we can also control the size and aspect ratio of
the bird. This is shown in Figure 4 by interpolating the bounding box coordinates while at the same
time fixing the text and noise conditioning variables.

This bird has 
a black head, 
a long orange 
beak and 
yellow body

This large 
black bird has 
a pointy beak 
and black eyes

This small blue 
bird has a 
short pointy 
beak and 
brown patches 
on its wings

Caption Shrinking Translation StretchingGT

Figure 4: Controlling the bird’s position using bounding box coordinates. and previously-unseen text.
With the noise vector z fixed in every set of three frames, the background is usually similar but not
perfectly invariant. Interestingly, as the bounding box coordinates are changed, the direction the bird
faces does not change. This suggests that the model learns to use the the noise distribution to capture
some aspects of the background and also non-controllable aspects of “where” such as direction.

5.2 Controlling individual part locations via keypoints
In this section we study the case of text-conditional image generation with keypoints fixed to the
ground-truth. This can give a sense of the performance upper bound for the text to image pipeline,
because synthetic keypoints can be no more realistic than the ground-truth. We take a real image and
its keypoint annotations from the CUB dataset, and a held-out text description, and draw samples
conditioned on this information.

Figure 5 shows several image samples that accurately reflect the text and keypoint constraints. More
examples including success and failure are included in the supplement. We observe that the bird pose
respects the keypoints and is invariant across the samples. The background and other small details,
such as thickness of the tree branch or the background color palette do change with the noise.

The GAWWN model can also use keypoints to shrink, translate and stretch objects, as shown
in Figure 6. We chose to specify beak and tail positions, because in most cases these define an
approximate bounding box around the bird.

4https://github.com/soumith/dcgan.torch
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L1 Loss

• G tries to generate fake images that fool D.

• D tries to identify fake images.

• Noise vector is removed,.Instead dropout is used to
provide stochasticity.

• Skip connections on Generative model

• PatchGAN is proposed for dicriminator instead of 
pixel GAN.

Isola vd. 2017

Real or fake pair?

Positive examples Negative examples

Real or fake pair?

DD

G

G tries to synthesize fake 
images that fool D

D tries to identify the fakes

Figure 2: Training a conditional GAN to predict aerial photos from
maps. The discriminator, D, learns to classify between real and
synthesized pairs. The generator learns to fool the discriminator.
Unlike an unconditional GAN, both the generator and discrimina-
tor observe an input image.

where G tries to minimize this objective against an ad-
versarial D that tries to maximize it, i.e. G

⇤
=

arg min

G

max

D

L
cGAN

(G, D).
To test the importance of conditioning the discrimintor,

we also compare to an unconditional variant in which the
discriminator does not observe x:

L
GAN

(G, D) =E
y⇠pdata(y)[log D(y)]+

E
x⇠pdata(x),z⇠pz(z)[log(1 � D(G(x, z))].

(2)

Previous approaches to conditional GANs have found it
beneficial to mix the GAN objective with a more traditional
loss, such as L2 distance [29]. The discriminator’s job re-
mains unchanged, but the generator is tasked to not only
fool the discriminator but also to be near the ground truth
output in an L2 sense. We also explore this option, using
L1 distance rather than L2 as L1 encourages less blurring:

L
L1(G) = E

x,y⇠pdata(x,y),z⇠pz(z)[ky � G(x, z)k1]. (3)

Our final objective is

G

⇤
= arg min

G

max

D

L
cGAN

(G, D) + �L
L1(G). (4)

Without z, the net could still learn a mapping from x to
y, but would produce deterministic outputs, and therefore
fail to match any distribution other than a delta function.
Past conditional GANs have acknowledged this and pro-
vided Gaussian noise z as an input to the generator, in addi-
tion to x (e.g., [39]). In initial experiments, we did not find

Encoder-decoder

U-Net

Figure 3: Two choices for the architecture of the generator. The
“U-Net” [34] is an encoder-decoder with skip connections be-
tween mirrored layers in the encoder and decoder stacks.

this strategy effective – the generator simply learned to ig-
nore the noise – which is consistent with Mathieu et al. [27].
Instead, for our final models, we provide noise only in the
form of dropout, applied on several layers of our generator
at both training and test time. Despite the dropout noise, we
observe very minor stochasticity in the output of our nets.
Designing conditional GANs that produce stochastic out-
put, and thereby capture the full entropy of the conditional
distributions they model, is an important question left open
by the present work.

2.2. Network architectures
We adapt our generator and discriminator architectures

from those in [30]. Both generator and discriminator use
modules of the form convolution-BatchNorm-ReLu [18].
Details of the architecture are provided in the appendix,
with key features discussed below.

2.2.1 Generator with skips

A defining feature of image-to-image translation problems
is that they map a high resolution input grid to a high resolu-
tion output grid. In addition, for the problems we consider,
the input and output differ in surface appearance, but both
are renderings of the same underlying structure. Therefore,
structure in the input is roughly aligned with structure in the
output. We design the generator architecture around these
considerations.

Many previous solutions [29, 39, 19, 48, 43] to problems
in this area have used an encoder-decoder network [16]. In
such a network, the input is passed through a series of lay-
ers that progressively downsample, until a bottleneck layer,
at which point the process is reversed (Figure 3). Such a
network requires that all information flow pass through all
the layers, including the bottleneck. For many image trans-
lation problems, there is a great deal of low-level informa-
tion shared between the input and output, and it would be
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features to be used yo generate
more realistic images.

• PatchGAN provides to generate
sharper images. .
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Loss Per-pixel acc. Per-class acc. Class IOU
L1 0.44 0.14 0.10
GAN 0.22 0.05 0.01
cGAN 0.61 0.21 0.16
L1+GAN 0.64 0.19 0.15
L1+cGAN 0.63 0.21 0.16
Ground truth 0.80 0.26 0.21

Table 1: FCN-scores for different losses, evaluated on Cityscapes
labels$photos.

“real vs fake” perceptual studies on Amazon Mechanical
Turk (AMT). For graphics problems like colorization and
photo generation, plausibility to a human observer is often
the ultimate goal. Therefore, we test our map generation,
aerial photo generation, and image colorization using this
approach.

Second, we measure whether or not our synthesized
cityscapes are realistic enough that off-the-shelf recognition
system can recognize the objects in them. This metric is
similar to the “inception score” from [36], the object detec-
tion evaluation in [39], and the “semantic interpretability”
measure in [46].

AMT perceptual studies For our AMT experiments, we
followed the protocol from [46]: Turkers were presented
with a series of trials that pitted a “real” image against a
“fake” image generated by our algorithm. On each trial,
each image appeared for 1 second, after which the images
disappeared and Turkers were given unlimited time to re-
spond as to which was fake. The first 10 images of each
session were practice and Turkers were given feedback. No
feedback was provided on the 40 trials of the main experi-
ment. Each session tested just one algorithm at a time, and
Turkers were not allowed to complete more than one ses-
sion. ⇠ 50 Turkers evaluated each algorithm. All images
were presented at 256 ⇥ 256 resolution. Unlike [46], we
did not include vigilance trials. For our colorization ex-
periments, the real and fake images were generated from
the same grayscale input. For map$aerial photo, the real
and fake images were not generated from the same input, in
order to make the task more difficult and avoid floor-level
results.

FCN-score While quantitative evaluation of generative
models is known to be challenging, recent works [36,
39, 46] have tried using pre-trained semantic classifiers to
measure the discriminability of the generated images as a
pseudo-metric. The intuition is that if the generated images
are realistic, classifiers trained on real images will be able
to classify the synthesized image correctly as well. To this
end, we adopt the popular FCN-8s [26] architecture for se-
mantic segmentation, and train it on the cityscapes dataset.
We then score synthesized photos by the classification accu-
racy against the labels these photos were synthesized from.

L1+cGAN
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Figure 5: Adding skip connections to an encoder-decoder to create
a “U-Net” results in much higher quality results.

Discriminator
receptive field Per-pixel acc. Per-class acc. Class IOU
1⇥1 0.44 0.14 0.10
16⇥16 0.62 0.20 0.16
70⇥70 0.63 0.21 0.16
256⇥256 0.47 0.18 0.13

Table 2: FCN-scores for different receptive field sizes of the dis-
criminator, evaluated on Cityscapes labels!photos.

3.2. Analysis of the objective function

Which components of the objective in Eqn. 4 are impor-
tant? We run ablation studies to isolate the effect of the L1
term, the GAN term, and to compare using a discriminator
conditioned on the input (cGAN, Eqn. 1) against using an
unconditional discriminator (GAN, Eqn. 2).

Figure 4 shows the qualitative effects of these variations
on two labels!photo problems. L1 alone leads to reason-
able but blurry results. The cGAN alone (setting � = 0 in
Eqn. 4) gives much sharper results, but results in some arti-
facts in facade synthesis. Adding both terms together (with
� = 100) reduces these artifacts.

We quantify these observations using the FCN-score on
the cityscapes labels!photo task (Table 1): the GAN-based
objectives achieve higher scores, indicating that the synthe-
sized images include more recognizable structure. We also
test the effect of removing conditioning from the discrimi-
nator (labeled as GAN). In this case, the loss does not pe-
nalize mismatch between the input and output; it only cares
that the output look realistic. This variant results in very
poor performance; examining the results reveals that the
generator collapsed into producing nearly the exact same
output regardless of input photograph. Clearly it is impor-
tant, in this case, that the loss measure the quality of the
match between input and output, and indeed cGAN per-
forms much better than GAN. Note, however, that adding
an L1 term also encourages that the output respect the in-
put, since the L1 loss penalizes the distance between ground
truth outputs, which match the input, and synthesized out-
puts, which may not. Correspondingly, L1+GAN is also
effective at creating realistic renderings that respect the in-

Input Ground truth L1 cGAN L1 + cGAN

Figure 4: Different losses induce different quality of results. Each column shows results trained under a different loss. Please see
https://phillipi.github.io/pix2pix/ for additional examples.

L1 1x1 16x16 70x70 256x256

Figure 6: Patch size variations. Uncertainty in the output manifests itself differently for different loss functions. Uncertain regions become
blurry and desaturated under L1. The 1x1 PixelGAN encourages greater color diversity but has no effect on spatial statistics. The 16x16
PatchGAN creates locally sharp results, but also leads to tiling artifacts beyond the scale it can observe. The 70x70 PatchGAN forces
outputs that are sharp, even if incorrect, in both the spatial and spectral (coforfulness) dimensions. The full 256x256 ImageGAN produces
results that are visually similar to the 70x70 PatchGAN, but somewhat lower quality according to our FCN-score metric (Table 2). Please
see https://phillipi.github.io/pix2pix/ for additional examples.

put label maps. Combining all terms, L1+cGAN, performs
similarly well.

Colorfulness A striking effect of conditional GANs is
that they produce sharp images, hallucinating spatial struc-
ture even where it does not exist in the input label map. One
might imagine cGANs have a similar effect on “sharpening”
in the spectral dimension – i.e. making images more color-
ful. Just as L1 will incentivize a blur when it is uncertain
where exactly to locate an edge, it will also incentivize an
average, grayish color when it is uncertain which of several
plausible color values a pixel should take on. Specially, L1
will be minimized by choosing the median of of the con-
ditional probability density function over possible colors.
An adversarial loss, on the other hand, can in principle be-
come aware that grayish outputs are unrealistic, and encour-
age matching the true color distribution [14]. In Figure 7,
we investigate if our cGANs actually achieve this effect on
the Cityscapes dataset. The plots show the marginal distri-

butions over output color values in Lab color space. The
ground truth distributions are shown with a dotted line. It
is apparent that L1 leads to a narrower distribution than the
ground truth, confirming the hypothesis that L1 encourages
average, grayish colors. Using a cGAN, on the other hand,
pushes the output distribution closer to the ground truth.

3.3. Analysis of the generator architecture

A U-Net architecture allows low-level information to
shortcut across the network. Does this lead to better results?
Figure 5 compares the U-Net against an encoder-decoder on
cityscape generation U-Net. The encoder-decoder is created
simply by severing the skip connections in the U-Net. The
encoder-decoder is unable to learn to generate realistic im-
ages in our experiments, and indeed collapses to producing
nearly identical results for each input label map. The advan-
tages of the U-Net appear not to be specific to conditional
GANs: when both U-Net and encoder-decoder are trained
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Input Ground truth Output Input Ground truth Output

Figure 12: Example results of our method on facades labels!photo, compared to ground truth
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Input Ground truth Output Input Ground truth Output

Figure 13: Example results of our method on day!night, compared to ground truth.

Input Ground truth Output Input Ground truth Output

Figure 14: Example results of our method on automatically detected edges!handbags, compared to ground truth.
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• Transient Attribute Dataset
§ 8571	outdoor images from

101	web	cams located in	
different places.

§ 40	dimensional transient
attributes for each image.

§ We annotate semantic
layouts of	101	scenes with
predefined 18	categories
e.g.		sky,	tree,	building,	
mountain,	etc.

P.-Y.	Laffont,	Z.	Ren,	X.	Tao,	C.	Qian,	and J.	Hays,	“Transient attributes for high-level understanding and editing of	
outdoor scenes,”	ACM	Transactions on	Graphics,	vol.	33,	no.	4,	2014	.

Laffont vd. 2014
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• ADE20K
§ 22210	indoor and outdoor

scenes with semantically
labeled layouts.

§ We selected 9201	outdoor
scenes according to predefined
18	categories.

§ We predicted transient
attributes for each image using
a	deep transient model.

R.	Baltenberger,	M.	Zhai,	C.	Greenwell,	S.	Workman,	and N.	Jacobs.	A	Fast Method for Estimating Transient Scene
Attributes.	InWACV	2016.

Zhou vd. 2017
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• Object adding / subtracting.
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Paired Unpaired

5s, gs stH$ ∈ u 5s stH$ ∈ u g stH
v ∈ w

Cycle Consistency
“if we translate, e.g., a sentence from English to French, and
then translate it back from French to English, we should
arrive back at the original sentence. “

ℒ %, x, 'y, 'z = ℒ"#$ %, 'z, u, w + ℒ"#$ x, '*, w, u
+aℒefe %, x

ℒefe %, x = )*~,-./. * x % 5 − 5 H +

)f~,-./.(f) % x g − g H

%: u → w F: w → u

x(%(5)) ≈ 5 G(%(g)) ≈ g
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Input Generated Reconstruction

• Two	encoder-decoder networks are jointly trained.

x}%: u → u ve	%}x: w → w

	

• 70×70	PatchGAN,	which	try	to	classify	whether	70	×	70	
overlapping	image	patches	are	real	or	fake	is	used.	

• Adversarial training.

Zhu vd. 2017
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Source:	https://github.com/tatsuyah/CycleGAN-Models

Zhu vd. 2017



Unpaired Image to Image Translation(CycleGAN)

63

Source:	https://github.com/tatsuyah/CycleGAN-Models
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• An end-to-end GAN that infers a face-
specific disentangled representation of
intrinsic face properties.
• Shape
• Albedo
• Lighting
• Alpha matte

• A given face image pÇ_ is the result of a
rendering process: É̂ÑZÖÑÉsZ_

pÇ_ = É̂ÑZÖÑÉsZ_(ÜÑ, áÑ, à)

pÇ_ = ŝâq_ÑäÇãÉâqmsãZ ÜÑ, GÑ = Aç⨀GÑ

GÑ = b̂èqÖsZ_ áÑ, à

Shu vd. 2017

Neural Face Editing with Intrinsic Image Disentangling
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Abstract

Traditional face editing methods often require a num-
ber of sophisticated and task specific algorithms to be ap-
plied one after the other — a process that is tedious, frag-
ile, and computationally intensive. In this paper, we pro-
pose an end-to-end generative adversarial network that in-
fers a face-specific disentangled representation of intrinsic
face properties, including shape (i.e. normals), albedo, and
lighting, and an alpha matte. We show that this network
can be trained on “in-the-wild” images by incorporating an
in-network physically-based image formation module and
appropriate loss functions. Our disentangling latent repre-
sentation allows for semantically relevant edits, where one
aspect of facial appearance can be manipulated while keep-
ing orthogonal properties fixed, and we demonstrate its use
for a number of facial editing applications.

1. Introduction

Understanding and manipulating face images in-the-wild
is of great interest to the vision and graphics community,
and as a result, has been extensively studied in previous
work. This ranges from techniques to relight portraits [34],
to edit or exaggerate expressions [36], and even drive fa-
cial performance [31]. Many of these methods start by
explicitly reconstructing face attributes like geometry, tex-
ture, and illumination, and then edit these attributes to edit
the image. However, reconstructing these attributes is a
challenging and often ill-posed task; previous techniques
deal with this by either assuming richer data (e.g., RGBD
video streams) or a strong prior on the reconstruction that
is adapted to the particular editing task that they seek to
solve (e.g., low-dimensional geometry [6]). As a result,
these techniques tend to be both costly and not generalize
well to the large variations in facial identity and appearance
that exist in images-in-the-wild.

In this work, our goal is to learn a compact, meaning-
ful manifold of facial appearance, and enable face edits by
walking along paths on this manifold. The remarkable suc-

(a) input (b) recon (c) albedo (d) normal (e) shading

(f) relit (g) smile (h) beard (i) eyewear (j) older
Figure 1. Given a face image (a), our network reconstructs the im-
age (b) with in-network learned albedo (c), normal (d), and shad-
ing(e). Using this network, we can manipulate face through light-
ing (f), expression (g), appearance (h), eyewear (i), and time (j).

cess of morphable face models [6] – where face geometry
and texture are represented using low-dimensional linear
manifolds – indicates that this is possible for facial appear-
ance. However, we would like to handle a much wider range
of manipulations including changes in viewpoint, lighting,
expression, and even higher-level attributes like facial hair
and age – aspects that cannot be represented using previ-
ous models. In addition, we would like to learn this model
without the need for expensive data capture [7]

To this end, we build on the success of deep learn-
ing – especially unsupervised auto-encoder networks – to
learn “good” representations from large amounts of data [4].
Trivially applying such approaches to our problem leads to
representations that are not meaningful, making the subse-
quent editing challenging. However, we have (approximate)
models for facial appearance in terms of intrinsic face prop-
erties like geometry (surface normals), material properties
(diffuse albedo), and illumination. We leverage this by de-
signing the network to explicitly infer these properties and
introducing an in-network forward rendering model that re-
constructs the image from them. Merely introducing these
factors into the network is not sufficient; because of the ill-
posed nature of the inverse rendering problem, the learnt in-
trinsic properties can be arbitrary. We guide the network by
imposing priors on each of these intrinsic properties; these
include a morphable model-driven prior on the geometry,

1



Neural Face Editing with Intrinsic Image Disentangling

66
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Figure 2. Network Architectures. The interchangeable modules (grey background-dashed boundary) highlight the difference between our
two proposed architectures: (a) Direct modeling of explicit normal (Ne) and albedo (Ae) maps. (b) Implicit coordinate system (UV ),
albedo (Ai) and normal (Ni) modeling to aid further disentangling in the face foreground.

end network where the face is physically grounded by ex-
plicit in-network representations of its shape, albedo, and
lighting. Fig. 2 shows the overall network structure. We
first introduce the foreground Shading Layer and the Im-
age Formation Layer (Sec. 2.1), followed by two alternative
in-network face representations (Fig. 2(a)-(b) and Sec. 2.2)
that are compatible with in-network image formation. Fi-
nally, we introduce in-network matting (Sec. 2.3) which fur-
ther disentangles the learning process of the foreground and
background for face images in the wild.

2.1. In-Network Physically-Based Face Rendering

From a graphics point of view, we assume a given face
image I

fg

is the result of a rendering process, frendering
where the inputs are an albedo map A

e

, a normal map N
e

,
and illumination/lighting L:

I
fg

= frendering(Ae

, N
e

, L) (1)

We assume Lambertian reflectance and adopt Retinex The-
ory [20] to separate the albedo (i.e. reflectance) from the
geometry and illumination:

I
fg

= fimage-formation(Ae

, S
e

) = A
e

� S
e

(2)

in which � denotes the per-element product operation in the
image space, and S

e

represents a shading map rendered by
N

e

and L:
S
e

= fshading(Ne

, L) (3)

If Eqs. 2 and 3 are differentiable, they can be realized
as in-network layers in an auto-encoder network (Fig. 2(a)).
This allows us to represent the image with disentangled la-
tent variables for physically meaningful factors in the image

formation process: the albedo latent variable Z
A

e

, the nor-
mals variable Z

N

e

and the lighting variable Z
L

. We show
that this is advantageous over the traditional approach of a
single latent variable that encodes the combined effect of all
image formation factors. Each of the latent variables allows
us access to a specific manifold, where semantically rele-
vant edits can be performed while keeping irrelevant latent
variables fixed. For instance, one can trivially perform im-
age relighting by only traversing the lighting manifold given
by Z

L

or changing only the albedo (e.g., to grow a beard)
by traversing Z

A

e

.
Computing shading from geometry (N

e

) and illumina-
tion (L) is nontrivial under unconstrained conditions, and
might result in fshading(·, ·) being a discontinuous function in
a significantly large region of the space it represents. There-
fore, we further assume distant illumination, L, that is rep-
resented by spherical harmonics [25] s.t. the Lambertian
shading function, fshading(·, ·) has an analytical form and is
differentiable.

Following previous work [25, 3, 34, 1], lighting L is rep-
resented by a 9-dimensional spherical harmonics coefficient
vector. For a given pixel, i, with normal ni = [n

x

, n
y

, n
z

]>,
the shading is rendered as:

Si

e

= S
e

(n
i

, L) = [ni; 1]
>K[ni; 1] (4)

where

K =

2

664

c1L9 c1L5 c1L8 c2L4

c1L5 �c1L9 c1L6 c2L2

c1L8 c1L6 c3L7 c2L3

c2L4 c2L2 c2L3 c4L1 � c5L7

3

775

c1 = 0.429043 c2 = 0.511664

c3 = 0.743125 c4 = 0.886227 c5 = 0.247708

(5)
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(a) (b) (c) (d) (e)
Figure 4. Smile editing via traversal on our representation (explicit
albedo and normal) vs. a baseline auto-encoder representation.
Our network provides better reconstructions (d) of the input im-
ages (a) and captures the geometry and appearance changes as-
sociated with smiling (e). The baseline network leads to poorer
reconstructions (b) and edits (c).

For a given attribute, e.g., the smiling expression, we
feed both positive data {x

p

} (smiling faces) and negative
data {x

n

} (faces with other expressions) into our network
to generate two sets of Z-codes {z

p

} and {z
n

}. These sets
represent corresponding empirical distributions of the data
on the low dimensional Z-space(s). Given an input face im-
age Isource that is not smiling, we seek to make it smile by
moving its Z-code(s) Zsource towards the distribution {z}

p

to get a transformed code Ztrans. After that, we reconstruct
the image corresponding to Ztrans with the decoders in our
model.

In order to compute the distributions for each attribute,
we sample a subset of 2000 images from the CelebA [21]
with the appropriate attribute label (e.g., smiling vs other
expresssions). We use the manifold traversal method pro-
posed by Gardner et al. [10] independently on each appro-
priate variable. The extent of the traversal is parameterized
by a regularization parameter, � (see [10] for details).

(a) input (b) reconstruction (c) baseline

(d)Z
UV

(e) Z
UV

,Z
Ni

(f) Z
UV

,Z
Ni

,Z
Ai

Figure 5. Smile editing via implicit factor traversal. Our implicit
representation directly captures smiling via a traversal of the UV
manifold (d) and both UV and implicit normals (e). Traversing on
the implict albedos on the other hand, leads to noticeable appear-
ance artifacts (f). For this experiment, we use the same regulariza-
tion (�= 0.03) on all manifolds.

(a) input (b) recon (c) (d) (e)
Figure 6. Smile editing via progressive traversal on the bottleneck
manifolds (ZUV and ZN

i

). From (c) to (e), � is 0.07, 0.05,
0.03 respectively. As the latent representation moves closer to the
smiling mode, stronger features of smiling, such as rising cheeks
and white teeth, appear. Note that we are also able to capture sub-
tle changes in the eyes that are often correlated with smiling.

In Fig. 4, we compare the results using our network
against the baseline auto-encoder. We traverse the albedo
and normal variables to produce edits which make the faces
smile and are able to capture changes in expression and the
appearance of teeth, while preserving the other aspects of
the image. In contrast, the results from traversing the base-
line latent space are much poorer – in addition to not being
able to reconstruct the pose and identity of the input prop-
erly, the traversal is not able to capture the smiling transfor-
mation as well as we do.

In Fig. 5 we demonstrate the utility of our implicit rep-
resentation. While lips/mouth and teeth might map to the
same region of the image space, they are in fact separated
in the face UV-space. This allows the implicit variables
to learn more targeted and accurate representations, hence
traversing just the Z

UV

, already results in a smiling face.
Combining this with traversal along Z

N

i

exaggerates the
smile. In contrast, we do not expect smiling to be correlated
with the implicit albedo space, and traversing along the Z

A

i

leads to poorer results with an incorrect frontal pose.
In Fig. 6 we demonstrate more results for smiling and

demonstrate that relaxing the traversal regularization pa-
rameter, �, gradually leads to stronger smiling expressions.

We also address the editing task of aging via manifold
traversal. For this experiment, we construct the latent space
distributions using images and labels from the PubFig [19]

(a) input (b) recon (c) (d) (e)
Figure 7. Aging via traversal on the albedo and normal manifolds.
From (c) to (e), � is 0.07, 0.05, 0.03 respectively. As the latent
representation moving towards to the senior mode, stronger fea-
tures of aging, such as changes in face shape and texture, appear
while retaining other aspects of the appearance like pose, lighting,
and eyewear.

dataset corresponding to the most and least senior images.
We expect aging to be correlated with both shape and tex-
ture, and show in Fig. 7 that traversing these manifolds leads
to convincing age progression.

Note that all of these edits have been performed on the
exact same network, indicating that our network architec-
ture is general enough to represent the manifold of face
appearance, and is able to disentangle the latent factors to
support specific editing tasks. Refer to our supplementary
material for more results, and comparisons.

Limitations. Our current face masks do not include hair.
This results in less control over some edits, e.g. aging, that
are inherently affecting the hair as well. However, this can
trivially be addressed, if a mask that also includes the hair
can be generated [9].

4.3. Relighting

A direct application of the albedo-normal-light decom-
position in our network is that it allows us to manipulate the
illumination of an input face via Z

L

while keeping the other
latent variable fixed. We can directly “relight” the face by
replacing its Z target

L

with some other Zsource
L

(e.g. using the
lighting variable of another face).

While our network is trained to reconstruct the input, due
to its limited capacity (especially due to the bottleneck layer
dimensionality), the reconstruction does not reproduce the

(a) target (b) source (c) Ssource (d) transfer (e) Stransfer

Figure 8. Lighting transfer using our model. We transfer the illu-
mination of two source images (b) to a given target (a)(top: image;
bottom: estimated normal), by generating the shading (e) of the
target using the lighting of the source, and applying to the original
target image.

input with all the details. For illumination editing, however,
we can directly manipulate the shading, that is also avail-
able in our network. We pass the source Isource and target
images I target through our network to estimate their individ-
ual factors. We use the target shading Starget with Eq. 2 to
compute a “detailed” albedo Atarget. Given the source light
Lsource, we render the shading of the target under this light
with the target normals N target (Eq. 3) to obtain the trans-
ferred shading Stransfer. In the end, the lighting transferred
image is rendered with Atarget and Stransfer using Eq. 2. This
is demonstrated in Fig. 8 where we are able to successfully
transfer the lighting from two sources with disparate iden-
tities, genders, and poses to a target while retaining all its
details. We present more relighting results, as well as quan-
titative tests on illumination (i.e. spherical harmonics coef-
ficients) prediction in the supplementary material.

5. Conclusions

We proposed a physically grounded rendering-based dis-
entangling network specifically designed for faces. Such
disentangling enables realistic face editing since it allows
trivial constraints at manipulation time. We are the first to
attempt in-network rendering for faces in the wild with real,
arbitrary backgrounds. Comparisons with traditional auto-
encoder approaches show significant improvements on fi-
nal edits, and our intermediate outputs such as face normals
show superior identity preservation compared to traditional
approaches.
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Conclusion • Every week, new GAN papers are
coming out.

• Very active topic in Machine Learning
and Computer Vision.

• Adversarial loss started to be used for
different problems in new papers in
premier conferences.

• It has big potential for other areas.


